Nuclear Science and Technology

Environmental Radioactivity

in the

European Community

2012-2014

Nuclear Science and Technology

Environmental Radioactivity

— in the

European Community

2012-2014

DG ENER: Nuclear Energy, Safety and ITER DG JRC: Nuclear Safety and Security

This work was performed as part of the (Radioactivity Environmental Monitoring) programme in the framework of JRC Support actions to Commission Services, DG ENER Luxembourg

This publication is a Science for Policy report by the Joint Research Centre (JRC), the European Commission's science and knowledge service. It aims to provide evidence-based scientific support to the European policymaking process. The contents of this publication do not necessarily reflect the position or opinion of the European Commission. Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use that might be made of this publication. For information on the methodology and quality underlying the data used in this publication for which the source is neither Eurostat nor other Commission services, users should contact the referenced source. The designations employed and the presentation of material on the maps do not imply the expression of any opinion whatsoever on the part of the European Union concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.

Contact information

Name: Juan Carlos de la Rosa Blul

Address: Joint Research Centre, Westerduinweg 3, NL-1755LE Petten, The Netherlands

Email: Juan-Carlos.DE-LA-ROSA-BLUL@ec.europa.eu

Tel.: +31 (0) 224565955

EU Science Hub

https://joint-research-centre.ec.europa.eu

JRC131946

EUR 31338 EN

PDF ISBN 978-92-76-60191-3

ISSN 1831-9424 (Science for Policy) ISSN 2315-2826 (Radiation protection)

doi:10.2760/396692 KJ-NA-31-338-EN-N

Luxembourg: Publications Office of the European Union, 2023

© European Atomic Energy Community, 2023

The reuse policy of the European Commission documents is implemented by the Commission Decision 2011/833/EU of 12 December 2011 on the reuse of Commission documents (OJ L 330, 14.12.2011, p. 39). Unless otherwise noted, the reuse of this document is authorised under the Creative Commons Attribution 4.0 International (CC BY 4.0) licence (https://creativecommons.org/licenses/by/4.0/). This means that reuse is allowed provided appropriate credit is given and any changes are indicated.

For any use or reproduction of photos or other material that is not owned by the European Atomic Energy Community, permission must be sought directly from the copyright holders.

How to cite this report: De Cort, M., Tollefsen, T., Marin Ferrer, M., De La Rosa Blul, J. C., Vanzo, S., Hernandez Ceballos, M. A., Cinelli, G., Nweke, E., Rood, B., De Felice, L., Martino, S., Tognoli, P. V. and Tanner, V., Environmental Radioactivity in the European Community 2012-2014, Publications Office of the European Union, Luxembourg, 2023, doi:10.2760/396692, JRC131946.

PREFACE

Under the terms of Article 36 of the Euratom Treaty, European Union Member States shall periodically communicate to the Commission information on environmental radioactivity levels on their national territory. Since the early 1960s, the Commission has compiled and published this information as a series of reports. The current report, covering the years 2012 to 2014, is the 35th in the series.

This report endeavours to improve the clarity of information on levels of radioactivity in the European environment by making use of standardised reporting levels. These reporting levels are supported by more detailed radioactivity levels from a limited number of stations that provide high sensitivity measurements. The current report is the first in which the new EC Member State – Croatia, since July 2013 – is fully incorporated in the tables and the figures.

As part of its DG Energy support programme, the Directorate for Nuclear Safety and Security of the EC Joint Research Centre (JRC) has introduced all environmental radioactivity results received from the Member States into the Radioactivity Environmental Monitoring (REM) database. The JRC collated, checked and loaded the data, prepared the tabulations and figures as appropriate and provided the draft of the report. I would like to express my gratitude for the JRC's assistance and for the cooperation provided by the national authorities who supplied the original data.

This report is addressed to all who are concerned with radioactivity in the European environment.

M. Garribba
Deputy Director-General
Responsible for the coordination
of Euratom policies and Energy
Union financing instruments
Directorate-General Energy

CONTENTS

I.	INTRODUCTION	5
	A. General	5
	B. Structure of the report	6
	C. Geographical divisions	6
II.	AIRBORNE PARTICULATES	6
III.	SURFACE WATER	7
IV.	DRINKING WATER	7
V.	MILK	7
VI.	MIXED DIET	8
	ATED INFORMATION	8
REF	ERENCES	8
DEN	ISE NETWORK RESULTS	12
	irborne particulates	12
	Gross-β	12
	Caesium-137	18
	urface water	24
	Residual-β	34
	Caesium-137	49
	rinking water	64
	Tritium	64
	Strontium-90	70
	Caesium-137	76
. м	lilk	82
	Strontium-90	82
	Caesium-137	88
. м	lixed diet	94
	Strontium-90	94
	Caesium-137	100
CD4	RSE NETWORK RESULTS	107
	irborne particulates	107
	Beryllium-7	108
	Caesium-137	115
	urface water	123
	Caesium-137	124
	rinking water	133
	Tritium	134
	Strontium-90	140
	Caesium-137	145

· Milk	153
· Strontium-90	154
· Caesium-137	162
· Mixed diet	171
· Strontium-90	172
· Caesium-137	178
APPENDICES	184
A: Origins And contents of Articles 35 And 36	184
B: Method for calculating the reporting levels	185
C: Methods for calculating time and geographical averages	186
D: Addresses of national competent authorities and laboratories	187
E: Bibliography Data sources	191
F: The REM Data bank	195
G: List of figures and tables	196
GLOSSARY	200
	 Strontium-90 Caesium-137 Mixed diet Strontium-90 Caesium-137 APPENDICES A: Origins And contents of Articles 35 And 36 B: Method for calculating the reporting levels C: Methods for calculating time and geographical averages D: Addresses of national competent authorities and laboratories E: Bibliography Data sources F: The REM Data bank G: List of figures and tables

I INTRODUCTION

A.General

This report presents a summary of the available data on levels of radioactivity in some environmental media in the European Union (EU) Member States for the years 2012 - 2014. These data are obtained from official reports published by the responsible authorities and from data transmitted directly to the Commission by the national authorities and from individual laboratories. Member States provide environmental radioactivity data to the EU to comply with Articles 35 and 36 of the Euratom Treaty (see Appendix A). Continuous or semi-continuous monitoring of air and water is undertaken in Member States. Monitoring of food products, such as milk or mixed diet is considered an acceptable surrogate for the Article 35 requirement to monitor soil¹.

Individual monitoring laboratories tend to retain measurement techniques that have proven reliable over the years and are of sufficient sensitivity for radiological protection purposes. Measurement techniques, and thus measurement sensitivities, may, therefore, vary between laboratories and countries. This can make the interpretation and comparison of data across Europe difficult.

In order to facilitate the presentation of the results, it has been agreed² to use uniform reporting levels (see Appendix B) as a benchmark. If the results for a certain sample type radionuclide combination are above their corresponding reporting level (RL), then the measured values are stated in this report. Otherwise they are reported as "< RL". Measured values are submitted either as a specific number or as known to be less than a certain value. When only known to be less than a certain value, the measured value is referred to as a constraint (<) value. Constraint (<) values above the corresponding reporting level are not considered in the calculations for this report. If the results for a certain sample type - radionuclide combination consist only of constraint (<) values above the reporting level, this is indicated with the Δ symbol in data tables. The reporting levels used in this report were derived such that they would indicate a resultant effective dose value of 1/1000th of a mSv (0.001 mSv).

It must be emphasised that the reporting levels are only meant to be a tool for presenting data and should not be confused with maximum permitted levels of radioactive contamination.

Radiation in the environment comes from space, from the earth, from air, from water, food and other natural sources. It also comes from radioactive waste, consumer products, atmospheric nuclear weapons testing and other artificial sources. Ionising radiation from natural and artificial sources do not differ in kind or effect on humans. The world average effective dose from all sources of radiation is 3.0 millisievert (mSv) per year (2.4 mSv for natural sources and 0.6 mSv for artificial)³ [2]. Across the Member States of the European Community the annual effective dose for members of the public from natural sources ranges from about 1.5 mSv to just above 6 mSv, with a population-weighted average annual effective dose of 3.2 mSv⁴ [2].

In normal circumstances, variations in time and space for the data from the many sampling locations which are distributed all over the Member States' territories (referred to as the "dense network" [1]) are gradual. For this reason daily, weekly or even monthly variations per sample location are not of radiological significance. The data are therefore presented as regional averages (Table 1) except for surface water where on single sample locations is reported.

Although most values are below reporting levels, it is valuable to present the actual concentrations for a small number of locations. This allows any trends in radionuclide concentrations to be monitored over time. To achieve this, a number of representative locations were selected, this is referred to as the "sparse network" [1]. High sensitivity measurements are performed at these locations and the individual results are presented graphically.

As in the previous report [3], the following combinations of sample and radionuclide categories are reported, as per the Commission Recommendations to Article 36 of the Euratom Treaty (2000/473/Euratom) [1] also mentioned in Appendix A:

Sampling media	Radionuclio	de categories
	Dense network	Sparse network
airborne particulates	gross ß ¹³⁷ Cs	⁷ Be ¹³⁷ Cs
surface water	residual ß ¹³⁷ Cs	¹³⁷ Cs
drinking water	³ H ⁹⁰ Sr ¹³⁷ Cs	³ H ⁹⁰ Sr ¹³⁷ Cs
milk	⁹⁰ Sr ¹³⁷ Cs	⁹⁰ Sr ¹³⁷ Cs
mixed diet	⁹⁰ Sr ¹³⁷ Cs	⁹⁰ Sr ¹³⁷ Cs

¹ According to [1], "The monitoring of levels of radioactivity in soil does not allow a direct assessment of the exposure of the population. The exposure related to soil contamination is more directly assessed on the basis of ambient dose rate and foodstuff contamination. Experience has shown that the incorporation of soil data in the monitoring serves little useful purpose".

² Official Journal of the European Communities L 191, 27.07.2000, p. 9 (Annex III).

³ European Atlas of Natural Radiation, Publication Office of the European Union, Luxembourg, 2019, p. 32.

⁴ European Atlas of Natural Radiation, Publication Office of the European Union, Luxembourg, 2019, p. 173.

⁵ Official Journal of the European Communities L 191, 27.07.2000, p. 2.

⁶ Official Journal of the European Communities L 191, 27.07.2000, p. 2.

However, not all of the above combinations of sample and nuclide type are routinely monitored by each Member State.

Every effort has been made to collect all the available data, thus, most of the blank entries correspond to the absence of measurements. In some cases, the available results may have not been received.

All the radionuclides sampled, except strontium-90 (90 Sr) and caesium-137 (137 Cs), can be of either natural or artificial origin. The two exceptions are of artificial origin, mainly from past atmospheric weapons testing and from radioactive routine or accidental discharges from nuclear facilities.

The sampling locations incorporated in this report are intended to be as representative as possible of regional or national situations. However, while measurements local to and possibly influenced by nuclear installations have been discounted wherever practical, in certain cases national data are strongly dependent on such monitoring programmes.

B. Structure of the report

This report is composed of three main parts:

The **text part** consists of a general introduction followed by one chapter for each medium; this includes general information on the sample type, the occurrence of natural radionuclides therein, a description of sample preparation and analysis and a short discussion of the results.

The **results** are presented by sample and nuclide type, sample types are identified with appropriate symbols. All data from the dense network is presented, followed by that from the sparse network.

- The dense network results are presented graphically (with the exception of surface water as this sample type does not allow for geographical presentation) and in tabular form. The graphical representation illustrates the annual average radioactivity concentrations for each geographical region (see Section C). Four shades are used to indicate the concentrations on a scale ranging from less than the reporting level to ten times the reporting level. In addition, each sampling location is indicated. Next to the graphical representation the results are presented in tabular form. These results are averaged over geographical regions and over a particular time period (quarter, semester or whole year, depending on the availability of data). The total number of sampling locations and the number of measurements used to calculate the annual averages are given for each geographical region. In addition, the monthly maximum and the month in which this occurred are given for those values above the appropriate reporting level.
- The results for the sparse network are preceded by a map illustrating the sampling locations. The data are presented as time versus activity concentration graphs from 1984 onwards (where the data is available). Between one and three nearby locations are illustrated on each graph. Full lines represent actual sampling periods whereas dotted lines link measurement results

over unsampled time periods. The appropriate reporting level is indicated by a horizontal line. The choice of 1984 as a start date enables the pulse of radioactivity which entered the environment of the EU from the 1986 Chernobyl accident in the Ukraine to be seen clearly.

The **appendices** to this report provide additional information on the Euratom Treaty, the calculation of reporting levels, the averaging procedures used, the data sources, the bibliography and information about the REM data bank. The addresses of the national authorities and laboratories that contributed to this report are given in Appendix D, while the national reports of environmental monitoring data are given in Appendix E. All data presented in this report are also stored in the REM data bank, at the JRC-Ispra, Italy (see Appendix F), and can be accessed with the REMdb online query described in the "Related Information" section at the end of this introduction.

Finally, and with the aim of enlarging the readership of this report, a glossary provides background information on frequently used terms in radiation protection.

C.Geographical divisions

For the larger Member States the data is divided according to geographical divisions. The partitioning of Croatia, Germany, Finland, France, Italy, Poland, Romania, Spain, Sweden and the United Kingdom has been based on administrative regions (Table 1) and results in a total of 47 geographical divisions of the EU (Figure 1).

II. AIRBORNE PARTICULATES

Airborne radioactive materials may occur in either gaseous or particulate form. In general, the latter is of greater potential radiological significance because it may be deposited and hence remain in the local environment. Consequently, most national routine monitoring networks measure only the particulate component. Atmospheric radioactivity is dominated by the naturally occurring, shortlived particulate decay products of gaseous radon (Rn = 1 to 20 Bq m⁻³ in outdoor air) [2]. Measurements of "total beta" radioactivity in airborne particulates must allow for this naturally occurring radioactivity. Other naturally occurring radionuclides measured in airborne particulates include beryllium-7 (⁷Be) and potassium-40 (⁴⁰K).

Airborne particulate **sampling** is carried out by pumping air through filters at a flow rate of several hundred cubic meters per day. In most countries filters are changed daily and analysed for total beta activity following the decay of radon decay products. Individual radionuclide analyses are performed weekly, monthly or quarterly. Manmade alpha-emitting aerosols are rarely measured by routine monitoring networks as they are usually undetectable, even close to the nuclear installations where they are produced. Therefore, these measurements are not presented in this report. The sampling locations in the EU for gross beta and ¹³⁷Cs, considered in this report, are

illustrated on the maps in figs. A1 - A3 and A4 - A6, respectively.

Minimal **treatment** of the air filters is required, on the whole, they are measured directly or they may be ashed or compressed to improve the counting geometry and hence counting efficiency.

Results: Most Member States have provided **gross beta** (**gross-β**) data (Tables A1 – A3) and ¹³⁷Cs data (Tables A4 – A6) for the dense network. For the sparse network those stations were selected that provide a good coverage of the European territory and for which measurable concentrations were reported. The results for the naturally occurring ⁷Be and artificial radionuclide ¹³⁷Cs are given in Figures A8 to A22 and Figures A23 to A37, respectively. The ¹³⁷Cs activity concentration trends clearly show the 'Chernobyl peak' (26 April - 10 May 1986), followed by a return to pre-Chernobyl concentration values. The Chernobyl-peak values may differ by several orders of magnitude at different locations, due to differences in the airborne activity and also differences in the sampling time used (ranging from hours to weeks).

III. SURFACE WATER

Surface water is one of the compartments into which authorised discharges of radioactive effluents from nuclear installations are made. Radionuclides in surface waters can be found in the water phase or associated with suspended particles and can eventually become incorporated into sediments and living species. Natural radionuclides in river water include ³H at levels of 0.02 - 0.1 Bq l⁻¹, ⁴⁰K (0.04 - 2 Bq l⁻¹), radium, radon and their short-lived decay products (< 0.4 - 2 Bq l⁻¹). The main fraction of tritium (³H) in surface water however is due to man's activities.

Samples are either taken continuously and bulked for monthly or quarterly analysis, or alternatively, spot samples are taken periodically several times a year and analysed individually. Some laboratories remove suspended material from the water sample for separate analysis.

Treatment of the water may consist of filtration or evaporation (for direct measurement of the residue), ion-exchange and subsequent washing of the ion exchange column. More elaborate chemical separation techniques are used to determine radionuclides such as strontium-90 (90 Sr). To determine 3 H concentrations, generally the water is multiple distilled.

Results: Most of the sampling locations considered (Fig. S1 to S10) lie on rivers into which authorised discharges of radioactive effluents are made. Surface water samples may, therefore, contain detectable radioactive contaminants traceable to installations at appreciable distances upstream from the sampling locations and this appears to be reflected in some cases in the results obtained. Furthermore, this has the effect of clouding the usual distinction made between sampling carried out for the purposes of general environmental monitoring and that for the surveillance of nuclear power plants. Nevertheless, since the rivers in question are all water courses of major

significance, the results have been considered to be nationally representative.

The results on beta activity given here (Tables S1 – S15) refer to **residual-ß** (total beta less natural ⁴⁰K activity). For France, the national reports indicate total beta for the water phase and for suspended matter, and the potassium content separately; the residual beta activity was calculated using a conversion factor of 27.6 Bq g⁻¹ potassium. Also ¹³⁷Cs is reported (Tables S16 – S30).

For the sparse network those stations were selected for which measurable concentrations of ¹³⁷Cs were reported and which provided a good coverage of the European territory on major rivers and in the sea (Fig. S11). The results are presented in Figs. S12 to S27.

It should be noted that while some above average values appear to be associated with discharges from nuclear installations the results are still well below levels which might be considered of any significance in terms of health.

IV. DRINKING WATER

Drinking water is monitored because of its vital importance for man, even though a severe radioactive contamination of this medium is rather improbable. The most important natural radionuclides in drinking water are ³H (0.02 - 0.4 Bq I⁻¹), ⁴⁰K (typically 0.2 Bq I⁻¹ but varies greatly), radium, radon and their short-lived decay products (0.4 - 4.0 Bq I⁻¹). Occasionally, the presence of ³H and radium may also be due to man's activities.

Samples may be taken from ground or surface water supplies, from water distribution networks, mineral waters etc. Spot samples are taken a few times a year and analysed individually or samples are taken daily and bulked for monthly or quarterly analysis.

Sample **treatment** usually consists of sample evaporation for direct measurement of the concentrate or separation on ion-exchange columns. More elaborate chemical separations are required for ⁹⁰Sr determination, whereas ³H is generally measured following multiple distillation of the sample.

Results: ³H values are presented in Tables W1 – W3. For the sparse network, thirty stations reported measured concentrations (Figs. W11 to W23). For ⁹⁰Sr the levels are shown in Tables W4 – W6 and, for the sparse network, in Figs. W24 to W34. For ¹³⁷Cs the results are presented in Tables W7 – W9 and, for the sparse network, in Figs. W35 to W48.

V. MILK

Consumption of milk and dairy products has been shown to be one of the most important pathways for uptake of radionuclides from environment to man.

Samples are mostly taken at dairies covering large geographical areas in order to obtain representative samples. They are generally taken on a monthly basis; but

sometimes only during the pasture season. The samples may be analysed separately or bulked for regional or national average evaluations.

Treatment usually consists of drying the sample for gamma spectroscopic analysis and chemical separation for 90 Sr.

Results: Generally the concentrations of the stable elements calcium (Ca) and potassium (K) are determined because of the similarity of their metabolic behaviour with strontium (Sr) and caesium (Cs) respectively. Typical values in milk are 1 to 2 g l⁻¹ for calcium and potassium. The average radioactive concentrations reported in the tables were mainly calculated from data which were themselves averages in time (daily, weekly or monthly) and space. For ⁹⁰Sr quarterly averages are shown in Tables M1 – M3. ¹³⁷Cs quarterly averages are presented in Tables M4 - M6.

VI. MIXED DIET

The aim of measuring radioactivity in mixed diet is to get "integral" information on the uptake of radionuclides by man via the food chain. Rather than expressing the radioactivity content of foodstuffs per unit weight, it is more appropriate to estimate the activity consumed per day per person (Bq d⁻¹ p⁻¹). An important natural radionuclide is ⁴⁰K (typically 100 Bq d⁻¹ p⁻¹).

Foodstuffs can be measured as separate ingredients. However, due to differences in the composition of national diets, the trend is to sample complete meals to give a representative figure for the contamination of mixed diet. Nevertheless knowledge of the contamination of the individual ingredients together with the composition of the national diet can also lead to a representative figure.

Samples are taken as ingredients or as complete meals, mostly at places where many meals are consumed (i.e. factory restaurants, schools).

Treatment usually consists of mixing the sample prior to gamma spectroscopic measurement of ¹³⁷Cs and chemical separation to determine the ⁹⁰Sr activity.

Results: Generally the concentrations of the stable isotopes of calcium and potassium are determined because of the similarity of their metabolic behaviour with strontium and caesium, respectively. Typical values in mixed diet are 0.7 to 1.5 g d⁻¹ person⁻¹ for calcium and 3 to 4 g d⁻¹ person⁻¹ for potassium. For ⁹⁰Sr the quarterly averages are shown in Tables D1 – D3. The sparse network results are presented in Figs. D8 – D19. ¹³⁷Cs quarterly averages are given in Tables D4 – D6. The measurements reported by the sparse network stations shown in the report clearly show a decreasing trend of caesium contamination in mixed diet after the Chernobyl accident (Figs. D20 to D32).

RELATED INFORMATION

Monitoring Reports available in electronic format

The list of all the published (and downloadable) Monitoring Reports is available here:

https://remon.jrc.ec.europa.eu/About/Environmental-Monitoring/Monitoring-Reports-Download

REMdb online query

Although the Monitoring Reports describe the collected information as complete as possible, this communication medium does not allow to show the amount of data in all its details. A new interface, called REMdb Query, provides an interactive access to the collected and verified environmental monitoring data in the European Union.

The new interface can be accessed from the "Maps" section, Routine Monitoring icon of web site https://remon.jrc.ec.europa.eu/ or directly from:

https://remap.jrc.ec.europa.eu/Routine.aspx

REMdb web services

REM has published various private web services that provide the link between the Data Submission Tool and the REM database at the JRC.

REFERENCES

- Commission Recommendation 2000/473/Euratom, OJ L191 of 27.7.2000
- 2. G. Cinelli, M. De Cort and T. Tollefsen, "European Atlas of Natural Radiation", Publication Office of the European Union, Luxembourg, 2019
- M. De Cort, T. Tollefsen, M. Marin Ferrer, S. Vanzo, M. A. Hernandez Ceballos, E. Nweke, L. De Felice, S. Martino, P. V. Tognoli and V. Tanner, "Environmental Radioactivity in the European Community 2007-2011", EUR 29564, 2018

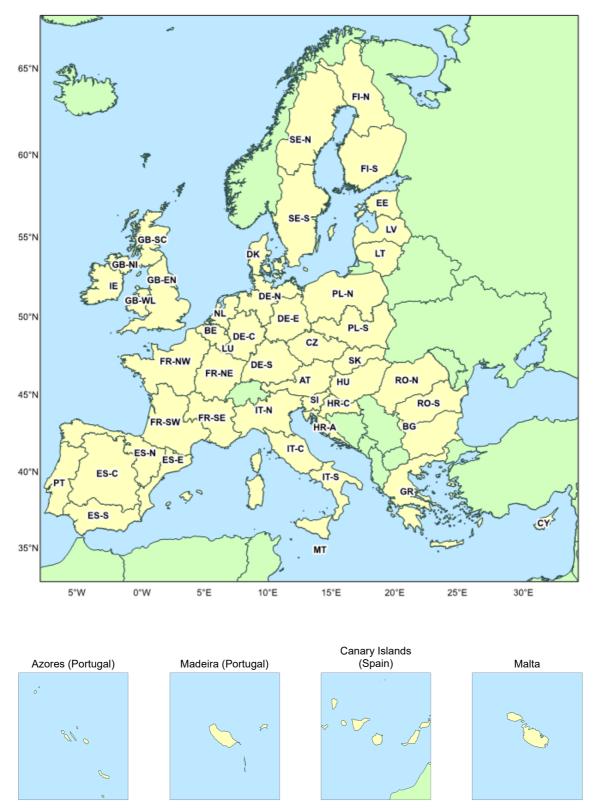
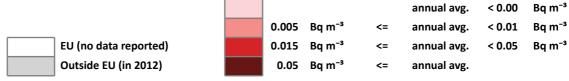
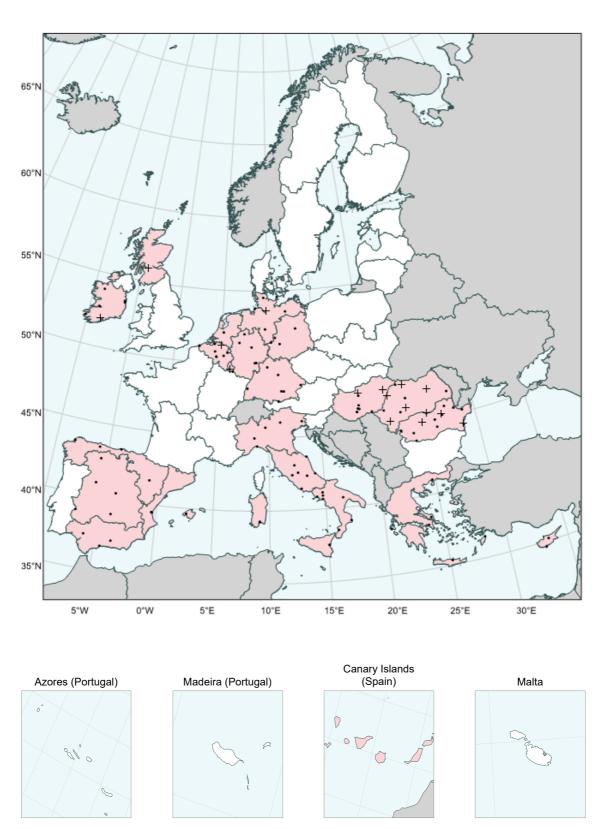



Fig . 1
Definition of the geographical regions used in the data tables and figures


Table 1Definition of country partitions. Country codes according to ISO 3166/4217

Country	Short description	Detailed description
AT	Austria	
BE	Belgium	
BG	Bulgaria	
CY	Cyprus	
CZ	Czech Republic	
DE-N	Germany - North	Bremen, Hamburg, Mecklenburg-Vorpommern, Niedersachsen and Schleswig- Holstein
DE-C	Germany - Central	Hessen, Nordrhein-Westfalen, Rheinland-Pfalz and Saarland
DE-S	Germany - South	Baden-Württemberg and Bayern
DE-E	Germany - East	Berlin, Brandenburg, Sachsen, Sachsen-Anhalt and Thüringen
DK	Denmark	
EE	Estonia	
ES-N	Spain - North	Aragon, Asturias, Cantabria, Galicia, Navarra, Pais Vasco and Rioja
ES-C	Spain - Central	Castilla - La Mancha, Castilla - Leon, Extramadura and Madrid
ES-S	Spain - South	Andalucia, Canarias, Ceuta y Melilla and Murcia
ES-E	Spain - East	Baleares, Cataluña and C. Valenciana
FI-N	Finland - North	Lapland and Oulu
FI-S	Finland - South	Western Finland, Eastern Finland, Southern Finland
FR-NW	France - Northwest	Bretagne, Centre, Ile de France, Nord-Pas-de-Calais, Haute Normandie, Basse Normandie, Pays de la Loire and Picardie
FR-NE	France - Northeast	Alsace, Bourgogne, Champagne-Ardennes, Franche-Comté and Lorraine
FR-SW	France - Southwest	Aquitaine, Languedoc-Roussillon, Limousin, Midi-Pyrénées and Poitou-Charentes
FR-SE	France - Southeast	Auvergne, Corse, Provence-Alpes-Côte-d'Azur and Rhône-Alpes
GB-EN	United Kingdom - England	
GB-WL	United Kingdom - Wales	
GB-SC	United Kingdom - Scotland	
GB-NI	United Kingdom - Northern Ireland	
GR	Greece	
HR-A	Croatia - Adriatic	Primorsko-goranska, Licko-senjska, Zadarska, Šibensko-kninska, Splitsko-dalmatinska, Istarska, Dubrovacko-neretvanska
HR-C	Croatia - Continental	Grad Zagreb, Zagrebacka, Krapinsko-zagorska, Varaždinska, Koprivnicko-križevacka, Medimurska, Bjelovarsko-bilogorska, Viroviticko-podravska, Požeško-slavonska, Brodsko-posavska, Osjecko-baranjska, Vukovarsko-srijemska, Karlovacka, Sisacko-moslavacka
HU	Hungary	
IE	Ireland	
IT-N	Italy - North	Emilia-Romagna, Friuli-Venezia-Giulia, Liguria,Lombardia, Piemonte, Trentino Alto Adige, Val d'Aosta and Veneto
IT-C	Italy - Central	Abruzzo, Lazio, Marche, Molise, Toscana and Umbria
IT-S	Italy - South	Basilicata, Calabria, Campania, Puglia, Sardegna and Sicilia
LT	Lithuania	
LU	Luxembourg	
LV	Latvia	
MT	Malta	
NL	The Netherlands	
PL-N	Poland - North	Kujawsko-Pomorskie, Lubuskie, Mazowieckie, Podlaskie, Pomorskie, Warminsko Mazurskie, Wielkopolskie, Zachodniopomorskie
PL-S	Poland - South	Dolnoslaskie, Lubelskie, Lodzskie, Malopolskie, Opolskie, Podkarpackie, Slaskie, Swietokrzyskie
PT	Portugal	
RO-N	Romania - North	Alba, Arad, Bacau, Bihor, Bistrita-Nasaud, Botosani, Brasov, Caras-Severin, Cluj,
RO-S	Romania - South	Covasna, Harghita, Hunedoara, Iasi, Maramures, Mures, Neamt, Salaj, Satu-Mare, Sibiu, Suceava, Timis and Vaslui Arges, Braila, Bucuresti-Ilfov, Buzau, Calarasi, Constanta, Dambovita, Dolj, Galati, Giurgiu, Gorj, Ialomita, Mehedinti, Olt, Prahova, Teleorman, Tulcea, Valcea and Vrancea
SE-N	Sweden - North	Övre Norrland and Mellersta Norrland
SE-S	Sweden - South	Stockholm, Östra Mellansverige, Sydsverige, Norra Mellansverige, Småland med öarna and Västsverige
SI	Slovenia	
SK	Slovakia	
		1

- sample location (Coordinate Accuracy = Precise or Not Specified)
- + regional average (Coordinate Accuracy = Reference Point of Region)

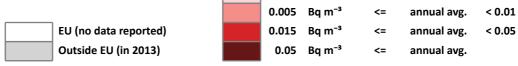
Fig.A1Sampling locations and geographical averages by year for gross-β in airborne particulates, 2012

Table A1: Geographical and time averages

YEAR : 2012

SAMPLE TYPE : airborne particulates (Bq m⁻³)

NUCLIDE CATEGORY : $gross-\beta$

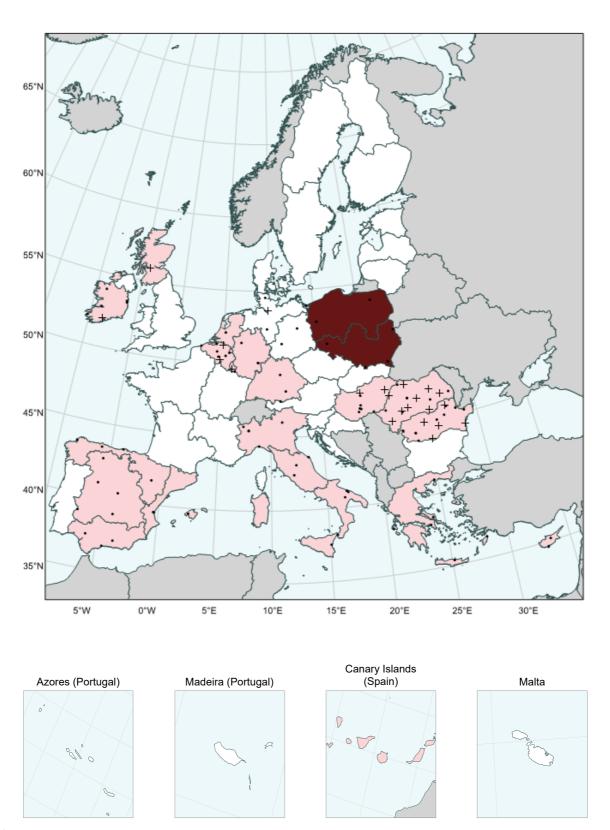

Country	N	L	1st	2nd	3rd	4th	Annual	Monthly	М
Country	'`	_	quarter	quarter	quarter	quarter	average	max	
AT			40000	4	4	4	3		
BE	2563	9	< RL	< RL	< RL	< RL	< RL	< RL	2
BG									
CY	20	2	< RL	< RL	< RL	< RL	< RL	< RL	11
CZ									
DE-N	272	6	< RL	< RL	< RL	< RL	< RL	< RL	2
DE-C	82	5	< RL	< RL	< RL	< RL	< RL	< RL	1
DE-S	241	7	< RL	< RL	< RL	< RL	< RL	< RL	8
DE-E	120	4	< RL	< <i>RL</i>	< <i>RL</i>	< RL	< RL	< RL	3
DE	715	22	< RL	< RL	< RL	< RL	< RL	< RL	2
DK									
EE ES-N	211	4	< RL	< RL	< RL	< RL	< RL	< RL	9
ES-N ES-C	260	5	< RL	< RL	< RL	< RL	< RL	< RL	9
ES-S	159	3	< RL	< RL	< RL	< RL	< RL	< RL	9
ES-E	159	3	< RL	< RL	< RL	< RL	< RL	< RL	8
ES-E	789	15	< RL	< RL	< RL	< RL	< RL	< RL	9
FI-N	, , ,	13	- //L	- NE	- NE	- INE	- INE	- ILL	
FI-S									
FI									
FR-NW									
FR-NE									
FR-SW									
FR-SE									
FR									
GB-EN									
GB-WL									
GB-SC	11	1	< RL	< RL	< RL	< RL	< RL	< RL	1
GB-NI									
GB	11	1	< RL	< RL	< RL	< RL	< RL	< RL	1
GR	441	6	< RL	< RL	< RL	< RL	< RL	< RL	8
HU	677	9	< RL	< RL	< RL	< RL	< RL	< RL	2
IE	71	6	< RL	< RL	< RL	< RL	< RL	< RL	9
IT-N	497	5	< RL	< RL	< RL	< RL	< RL	< RL	8
IT-C	805	7	< RL	< RL	< RL	< RL	< RL	< RL	1
IT-S	367	11	< RL	< RL	< RL	< RL	< RL	< RL	8
IT LT	1669	23	< RL	< RL	< RL	< RL	< RL	< RL	1
LU	77	2	< RL	< RL	< RL	< RL	< RL	< RL	2
LV	11		\ KL	\ KL	\ KL	\ KL	\ KL	\ KL	
MT									
NL	53	1	< RL	< RL	< RL	< RL	< RL	< RL	5
PL-N	00	- '	- 712	- / \L	· AL	- 112	· NE	- 112	
PL-S									
PL									
PT									
RO-N	711	10	< RL	< RL	< RL	< RL	< RL	< RL	9
RO-S	1021	14	< RL	< RL	< RL	< RL	< RL	< RL	12
RO	1732	24	< RL	< RL	< RL	< RL	< RL	< RL	12
SE-N									
SE-S									
SE									
SI									
SK									

RL: reporting level for gross- β In air, i.e. 5.0 E-03 BQ/M3 (see Appendix B)

N: Number of measurements considered in calculating the annual concentration. L: Number of sampling locations considered in calculating the annual concentration. Monthly max: Maximum monthly average in the year.

M: Month during which the maximum occurred.

annual avg.


< 0.00

Bq m⁻³

Bq m⁻³

Bq m⁻³

- sample location (Coordinate Accuracy = Precise or Not Specified)
- + regional average (Coordinate Accuracy = Reference Point of Region)

Fig.A2Sampling locations and geographical averages by year for gross-β in airborne particulates, 2013

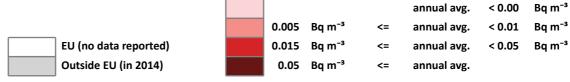
Table A2: Geographical and time averages

YEAR 2013

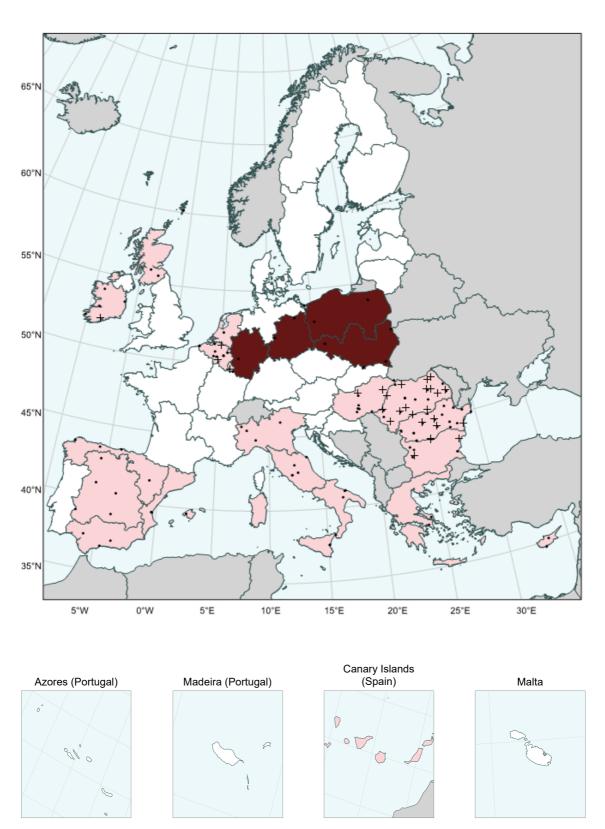
SAMPLE TYPE airborne particulates (Bq m⁻³)

NUCLIDE CATEGORY gross-β

Country	N	L	1st	2nd	3rd	4th	Annual	Monthly	М
Country	"	-	quarter	quarter	quarter	quarter	average	max	
AT			•		·	·			
BE	2507	8	< RL	< RL	< RL	< RL	< RL	< RL	3
BG									
CY	212	2	< RL	< RL	< RL	< RL	< RL	< RL	11
CZ DE-N	3	3					Δ		
DE-N	5	3	< RL				∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠	< RL	3
DE-S	156	3	< RL	< RL	< RL	< RL	< RL	< RL	7
DE-E	2	2	7,12	17.2			Δ		,
DE	166	11	< RL	< RL	< RL	< RL	- < RL	< RL	7
DK									
EE									
ES-N	211	4	< RL	< RL	< RL	< RL	< RL	< RL	7
ES-C	259	5	< RL	< RL	< RL	< RL	< RL	< RL	7
ES-S	160	3	< RL	< RL	< RL	< RL	< RL	< RL	9
ES-E	158	3	< RL	< RL	< RL	< RL	< RL	< RL	7
ES	788	15	< RL	< RL	< RL	< RL	< RL	< RL	7
FI-N FI-S									
FI-S FI									
FR-NW									
FR-NE									
FR-SW									
FR-SE									
FR									
GB-EN									
GB-WL									
GB-SC	13	1	< RL	< RL	< RL	< RL	< RL	< RL	1
GB-NI									
GB	13	1	< RL	< RL	< RL	< RL	< RL	< RL	1
GR	373	6	< RL	< RL	< RL	< RL	< RL	< RL	10
HR-A HR-C									
HR-C									
HU	781	8	< RL	< RL	< RL	< RL	< RL	< RL	4
IE	72	6	< RL	< RL	< RL	< RL	< RL	< RL	12
IT-N	419	5	< RL	< RL	< RL	< RL	< RL	< RL	1
IT-C	594	3	< RL	< RL	< RL	< RL	< RL	< RL	8
IT-S	660	5	< RL	< RL	< RL	< RL	< RL	< RL	1
IT	1673	13	< RL	< RL	< RL	< RL	< RL	< RL	12
LT									
LU	76	2	< RL	< RL	< RL	< RL	< RL	< RL	7
LV									
MT NL	E2		< RL	< RL	< RL	< RL	< RL	< RL	2
PL-N	53 6	3	< RL 1.8E-01	< RL 1.8E-01	< RL 1.8E-01	1.8E-01	< RL 1.8E-01	1.8E-01	3
PL-N	8	4	6.3E-02	6.3E-02	6.3E-02	6.3E-02	6.3E-02	6.3E-02	12
PL PL	14	7	0.3L-02 1.1E-01	1.1E-01	1.1E-01	1.1E-01	1.1E-01	1.1E-01	12
PT	'''	-	0,	0,	01	07	01	0,	
RO-N	2654	16	< RL	< RL	< RL	< RL	< RL	< RL	12
RO-S	2722	14	< RL	< RL	< RL	< RL	< RL	< RL	11
RO	5376	30	< RL	< RL	< RL	< RL	< RL	< RL	11
SE-N									
SE-S									
SE									
SI									
SK	1								


RL: reporting level for gross- β In air, i.e. 5.0 E-03 BQ/M3 (see Appendix B) Δ : only constraint (<) values above the reporting level were reported

N: Number of measurements considered in calculating the annual concentration. L: Number of sampling locations considered in calculating the annual concentration.


Monthly max: Maximum monthly average in the year.

M: Month during which the maximum occurred.

- sample location (Coordinate Accuracy = Precise or Not Specified)
- + regional average (Coordinate Accuracy = Reference Point of Region)

Fig.A3Sampling locations and geographical averages by year for gross-β in airborne particulates, 2014

Table A3: Geographical and time averages

YEAR 2014

SAMPLE TYPE : airborne particulates (Bq m⁻³)

NUCLIDE CATEGORY gross-β

Country	N	L	1st	2nd	3rd	4th	Annual	Monthly	М
		_	quarter	quarter	quarter	quarter	average	max	
AT			•	·					
BE	2552	12	< RL	< RL	< RL	< RL	< RL	< RL	9
BG	12	7	< RL	< RL	< RL	< RL	< RL	< RL	3
CY	200	2	< RL	< RL	< RL	< RL	< RL	< RL	8
CZ									
DE-N							Δ		
DE-C	2	1		2.8E-01	2.4E-01		2.6E-01	2.8E-01	6
DE-S		_		0.75.04		4.04	Δ	0.75.04	•
DE-E DE	3 5	2		9.7E-01 6.2E-01	2.4E-01	< RL < RL	4.9E-01 2.9E-01	9.7E-01 6.2E-01	6 6
DK	3	3		0.2E-01	2.46-01	\ KL	2.9E-01	0.2E-01	
EE									
ES-N	210	4	< RL	< RL	< RL	< RL	< RL	< RL	10
ES-C	265	5	< RL	< RL	< RL	< RL	< RL	< RL	10
ES-S	158	3	< <i>RL</i>	< RL	< RL	< <i>RL</i>	< RL	< RL	10
ES-E	157	3	< RL	< RL	< RL	< RL	< RL	< RL	6
ES	790	15	< RL	< RL	< RL	< RL	< RL	< RL	10
FI-N									
FI-S									
FI									
FR-NW									
FR-NE									
FR-SW									
FR-SE									
FR									
GB-EN									
GB-WL									
GB-SC	36	3	< RL	< RL	< RL	< RL	< RL	< RL	1
GB-NI GB	26	3	, DI	4 DI	- DI	- DI	- DI	- DI	1
GR	36 2	2	< RL < RL	< RL	< RL	< RL	< RL < RL	< RL < RL	1
HR-A			· NL				TIL	TAL	,
HR-C									
HR									
HU	780	9	< RL	< RL	< RL	< RL	< RL	< RL	11
IE	55	5	< RL	< RL	< RL	< RL	< RL	< RL	9
IT-N	389	4	< RL	< RL	< RL	< RL	< RL	< RL	1
IT-C	170	5	< RL	< RL	< RL	< RL	< RL	< RL	3
IT-S	750	6	< RL	< RL	< RL	< RL	< RL	< RL	4
IT	1309	15	< RL	< RL	< RL	< RL	< RL	< RL	1
LT									
LU	78	2	< RL	< RL	< RL	< RL	< RL	< RL	9
LV									
MT									
NL DL N	54	1	< RL	< RL	< RL	< RL	< RL	< RL	9
PL-N	3	3	1.4E-01	1.4E-01	1.4E-01	1.4E-01	1.4E-01	1.4E-01	1
PL-S PL	4 7	4 7	1.3E-01	1.3E-01	1.3E-01	1.3E-01 1.4E-01	1.3E-01	1.3E-01	12 1
PT	- '	/	1.4E-01	1.4E-01	1.4E-01	1.46-01	1.4E-01	1.4E-01	1
RO-N	5957	24	< RL	< RL	< RL	< RL	< RL	< RL	11
RO-S	5991	23	< RL	< RL	< RL	< RL	< RL	< RL	8
RO RO	11948	47	< RL	< RL	< RL	< RL	< RL	< RL	11
SE-N	<u> </u>		- ·-			· ·-			
SE-S									
SE									
SI									
SK					<u> </u>				

RL: reporting level for gross- β In air, i.e. 5.0 E-03 BQ/M3 (see Appendix B) Δ : only constraint (<) values above the reporting level were reported

N: Number of measurements considered in calculating the annual concentration. L: Number of sampling locations considered in calculating the annual concentration.

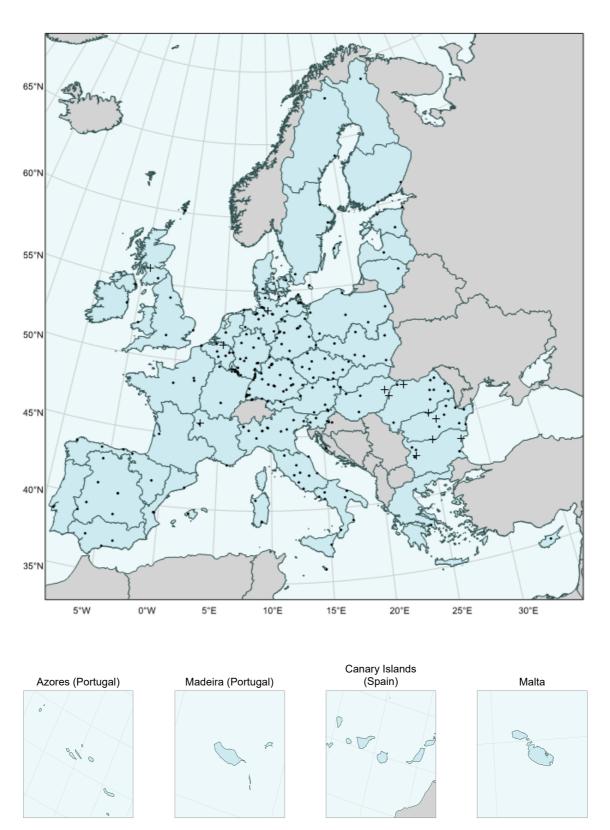
Monthly max: Maximum monthly average in the year.

M: Month during which the maximum occurred.

annual avg.

< 0.03

< 0.09


< 0.3

Bq m⁻³

Bq m⁻³

Bq m⁻³

- sample location (Coordinate Accuracy = Precise or Not Specified)
- + regional average (Coordinate Accuracy = Reference Point of Region)

Fig.A4Sampling locations and geographical averages by year for ¹³⁷Cs in airborne particulates, 2012

Table A4: Geographical and time averages

YEAR : 2012

SAMPLE TYPE : airborne particulates (Bq m⁻³)

NUCLIDE CATEGORY : caesium-137 (137Cs)

Country	N	L	1st	2nd	3rd	4th	Annual	Monthly	M
			quarter	quarter	quarter	quarter	average	max	
AT	587	10	< RL	2					
BE	95	8	< RL	1					
BG	151	8	< RL	10					
CY	11	1	< RL	4					
CZ	533	10	< RL	11					
DE-N	3966	25	< RL	11					
DE-C	4023	22	< <i>RL</i>	< <i>RL</i>	< RL	< <i>RL</i>	< <i>RL</i>	< RL	3
DE-S	4844	32	< <i>RL</i>	< <i>RL</i>	< RL	< RL	< <i>RL</i>	< RL	3
DE-E	3361	12	< RL	3					
DE	16194	91	< RL	3					
DK	73	3	< RL	12					
EE	159	3	< RL	7					
ES-N	104	5	< RL	9					
ES-C	169	7	< RL	10					
ES-S	134	4	< RL	8					
ES-E	92	4	< RL	5					
ES	499	20	< RL	9					
FI-N	53	1	< RL	2					
FI-S	373	3	< RL	12					
FI	426	4	< RL	12					
FR-NW	71	3	< RL	3					
FR-NE	69	2	< RL	2					
FR-SW	37	1	< RL	3					
FR-SE	81	3	< RL	2					
FR	258	9	< RL	3					
GB-EN	15	3	< RL	2					
GB-WL	5	1	< RL	2					
GB-SC	21	3	< RL	2					
GB-NI	5	1	< RL	2					
GB	46	8	< RL	2					
GR	8	1	1 D/	< RL	10				
HU	170	4	< RL	6					
IE	6	1	< RL	12					
IT-N	257	12	< RL	7					
IT-C	1015	9	< RL	9					
IT-S	299	11	< RL	7					
IT 	1571	32	< RL	9					
LT	13	1	< RL	< RL	< RL < RL	< RL	< RL	< RL	2
LU	106	2	< RL	< RL		< RL	< RL	< RL	12
LV	3 46	1	< RL < RL	< RL	< RL < RL	1.0/	< RL < RL	< RL < RL	3
MT NL		1	< RL			< RL	< RL	< RL	10
PL-N	53 6	6	< RL	< RL < RL	< RL < RL	< RL < RL	< RL	< RL	1
		- 1							
PL-S PL	6 12	6	< RL	< RL	< RL < RL	< RL	< RL	< RL < RL	1
		12	< RL	< RL		< RL	< RL		1
PT PO N	52	1	< RL	7					
RO-N	47	11	< RL	1					
RO-S RO	62	9	< RL < RL	< RL < RL	< RL < RL	< RL	< RL	< RL < RL	1
SE-N	109 107	20	< RL	< RL	< RL	< RL < RL	< RL < RL	< RL < RL	1 6
SE-N SE-S		- 1	< RL < RL	< RL < RL	< RL < RL		< RL < RL	< RL < RL	
SE-S SE	215	4	< RL < RL	< RL < RL	< RL < RL	< RL	< RL < RL	< RL < RL	5
	322	6				< RL		< RL < RL	6
SI	59	5	< RL	\ KL	12				

< RL

< RL

< RL

< RL

2

< RL

< RL

SK

RL: reporting level for 137 Cs In air, i.e. 3.0 E-02 BQ/M3 (see Appendix B)

N: Number of measurements considered in calculating the annual concentration. L: Number of sampling locations considered in calculating the annual concentration. Monthly max: Maximum monthly average in the year.

M: Month during which the maximum occurred.

- . sample location (Coordinate Accuracy = Precise or Not Specified)
- + regional average (Coordinate Accuracy = Reference Point of Region)

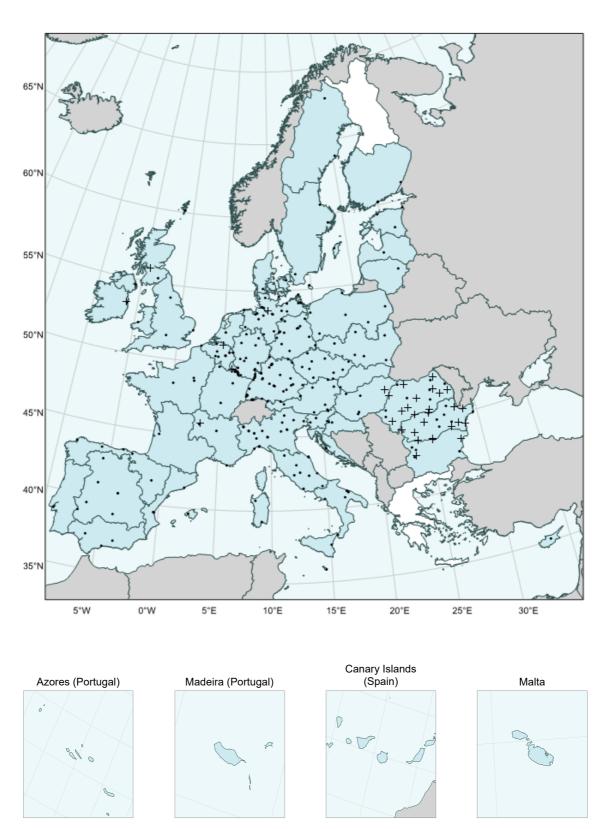
annual avg.

annual avg.

annual avg.

annual avg.

< 0.03


< 0.09

< 0.3

Bq m⁻³

Bq m⁻³

Bq m⁻³

Fig.A5Sampling locations and geographical averages by year for ¹³⁷Cs in airborne particulates, 2013

Table A5: Geographical and time averages

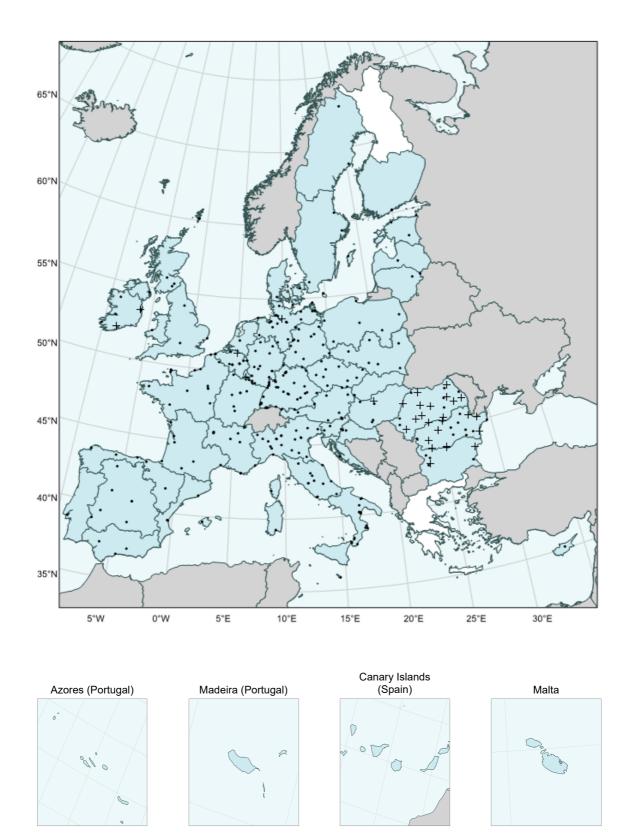
YEAR 2013

SAMPLE TYPE : airborne particulates (Bq m⁻³)

caesium-137 (137Cs) **NUCLIDE CATEGORY**

Country	N	L	1st	2nd	3rd	4th	Annual	Monthly	М
			quarter	quarter	quarter	quarter	average	max	
AT	525	10	< RL	12					
BE	98	9	< RL	11					
BG	142	8	< RL	1					
CY	32	1	< RL	7					
CZ	553	11	< RL	6					
DE-N	4087	26	< RL	1					
DE-C	3781	22	< RL	1					
DE-S	4513	34	< RL	1					
DE-E	3240	12	< RL	1					
DE	15621	94	< RL	1					
DK	73	3	< RL	1					
EE	152	3	< RL	4					
ES-N	105	5	< RL	2					
ES-C	172	7	< RL	8					
ES-S	131	4	< RL	10					
ES-E	92	4	< RL	3					
ES	500	20	< RL	2					
FI-N									
FI-S	512	5	< RL	4					
FI	512	5	< RL	4					
FR-NW	56	3	< RL	12					
FR-NE	66	3	< RL	12					
FR-SW	48	1	< RL	7					
FR-SE	78	5	< RL	12					
FR	248	12	< RL	12					
GB-EN	15	3	< RL	8					
GB-WL	5	1	< RL	1					
GB-SC	23	3	< RL	1					
GB-NI	5	1	< RL	1					
GB	48	8	< RL	1					
GR									
HR-A	5	1	< RL	11					
HR-C	15	1	< RL	1					
HR	20	2	< RL	12					
HU	237	5	< RL	1					
IE	10	2	< RL	1					
IT-N	323	22	< RL	11					
IT-C	923	11	< RL	1					
IT-S	182	9	< RL	9					
IT	1428	42	< RL	1					
LT	10	1	< RL	4					
LU	106	2	< RL	2					
LV	3	1	< RL	< RL	< RL		< RL	< RL	9
MT	53	1	< RL	2					
NL	53	1	< RL	3					
PL-N	12	6	< RL	1					
PL-S	12	6	< RL	1					
PL	24	12	< RL	1					
PT	49	1	< RL	1					
RO-N	234	19	< RL	10					
RO-S	224	18	< RL	8					
RO	458	37	< RL	7					
SE-N	107	2	< RL	4					
SE-S	213	4	< RL	4					
SE	320	6	< RL	4					
SI	63	5	< RL	9					
SK	13	1	< RL	1					

RL: reporting level for $^{\rm 137}{\rm Cs}$ In air, i.e. 3.0 E-02 BQ/M3 (see Appendix B)


N: Number of measurements considered in calculating the annual concentration. L: Number of sampling locations considered in calculating the annual concentration. Monthly max: Maximum monthly average in the year.

M: Month during which the maximum occurred.

- sample location (Coordinate Accuracy = Precise or Not Specified)
- + regional average (Coordinate Accuracy = Reference Point of Region)

Fig.A6Sampling locations and geographical averages by year for ¹³⁷Cs in airborne particulates, 2014

Table A6: Geographical and time averages

YEAR 2014

SAMPLE TYPE : airborne particulates (Bq m⁻³)

caesium-137 (137Cs) **NUCLIDE CATEGORY**

Country	N	L	1st	2nd	3rd	4th	Annual	Monthly	М
			quarter	quarter	quarter	quarter	average	max	
AT	567	10	< RL	1					
BE	100	11	< RL	9					
BG	151	8	< RL	8					
CY	29	1	< RL	3					
CZ	567	10	< RL	9					
DE-N	4016	25	< RL	11					
DE-C	3782	18	< RL	11					
DE-S	4576	35	< RL	11					
DE-E	3281	11	< RL	11					
DE	15655	89	< RL	11					
DK	76	4	< RL	11					
EE	151	3	< RL	5					
ES-N	105	5	< RL	11					
ES-C	173	7	< RL	4					
ES-S	133	4	< RL	6					
ES-E	92	4	< RL	3					
ES	503	20	< RL	6					
FI-N									
FI-S	518	4	< RL	5					
FI	518	4	< RL	5					
FR-NW	665	14	< RL	2					
FR-NE	218	7	< RL	8					
FR-SW	374	8	< RL	1					
FR-SE	389	11	< RL	3					
FR	1646	40	< RL	2					
GB-EN	15	3	< RL	8					
GB-WL	5	1	< RL	1					
GB-SC	38	5	< RL	2					
GB-NI	5	1	< RL	1					
GB	63	10	< RL	9					
GR									
HR-A	5	1	< RL	8					
HR-C	12	1	< RL	4					
HR	17	2	< RL	4					
HU	226	5	< RL	1					
IE	121	7	< RL	4					
IT-N	691	20	< RL	3					
IT-C	698	13	< RL	12					
IT-S	159	18	< RL	9					
IT	1548	51	< RL	4					
LT	9	2		< RL	10				
LU	105	2	< RL	1					
LV	3	1			< RL	< RL	< RL	< RL	7
МТ	53	1	< RL	8					
NL	54	1	< RL	4					
PL-N	6	6	< RL	1					
PL-S	6	6	< RL	1					
PL	12	12	< RL	1					
PT	50	1	< RL	1					
RO-N	229	19	< RL	7					
RO-S	216	18	< RL	1					
RO	445	37	< RL	8					
SE-N	106	2	< RL	6					
SE-S	212	4	< RL	5					
SE	318	6	< RL	5					
SI	75	5	< RL	12					
SK	13	2	< RL	1					

RL: reporting level for $^{\rm 137}{\rm Cs}$ In air, i.e. 3.0 E-02 BQ/M3 (see Appendix B)

N: Number of measurements considered in calculating the annual concentration. L: Number of sampling locations considered in calculating the annual concentration. Monthly max: Maximum monthly average in the year.

M: Month during which the maximum occurred.

DENSE

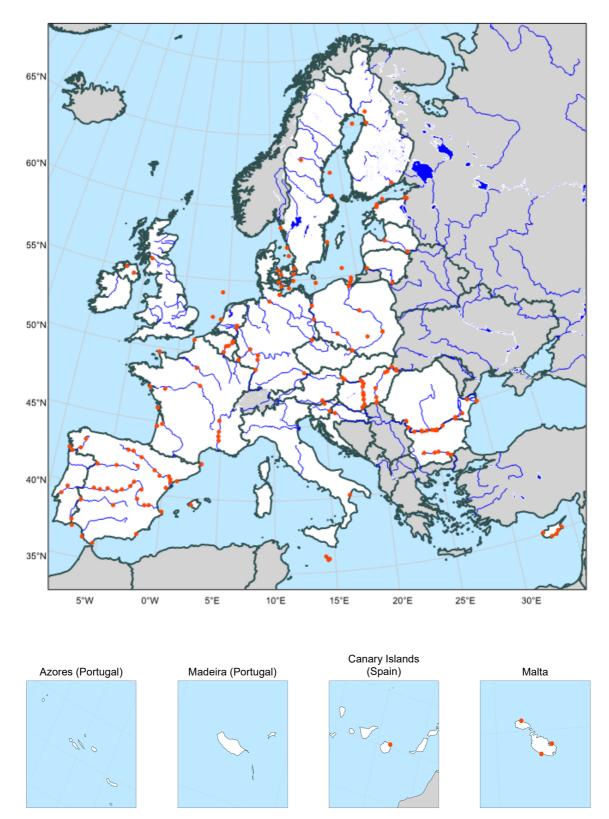


Fig. S1 Sampling locations for residual- β and ^{137}Cs in surface water considered in Tables S1 - S30

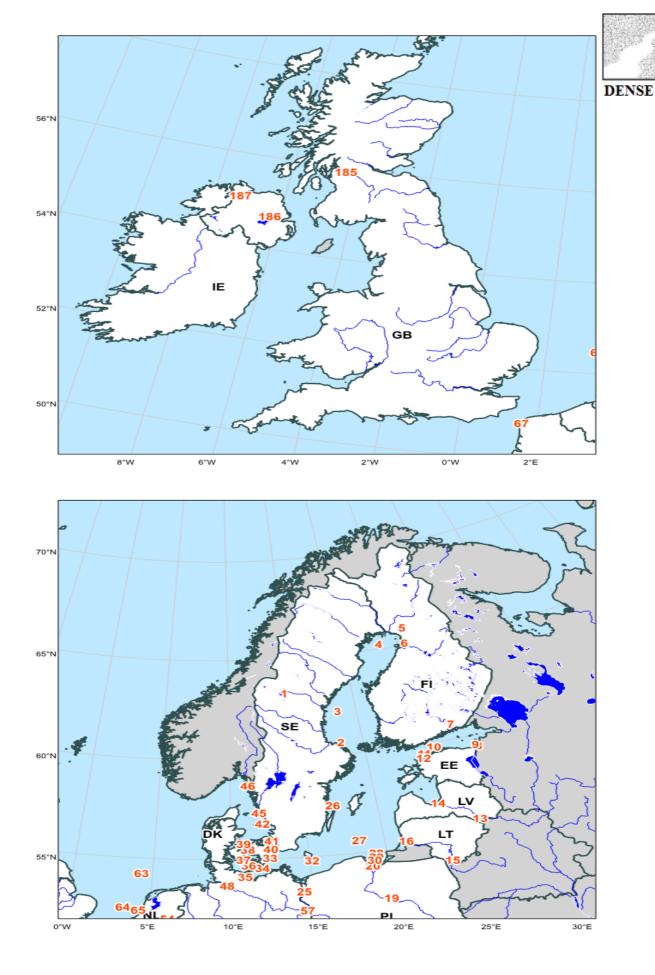
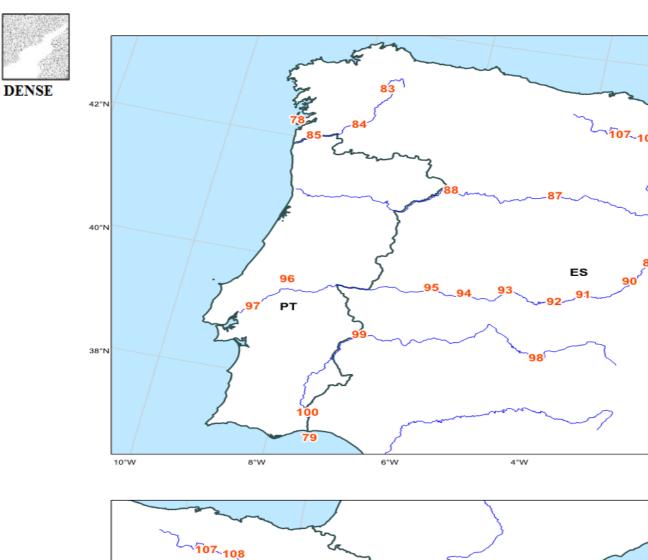



Fig. S2 Sampling locations for residual- β and ^{137}Cs in surface water considered in Tables S1 - S30

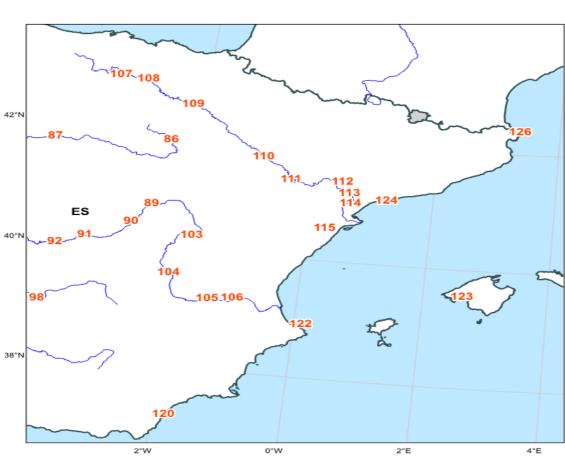


Fig. S3 Sampling locations for residual- β and 137 Cs in surface water considered in Tables S1 - S30

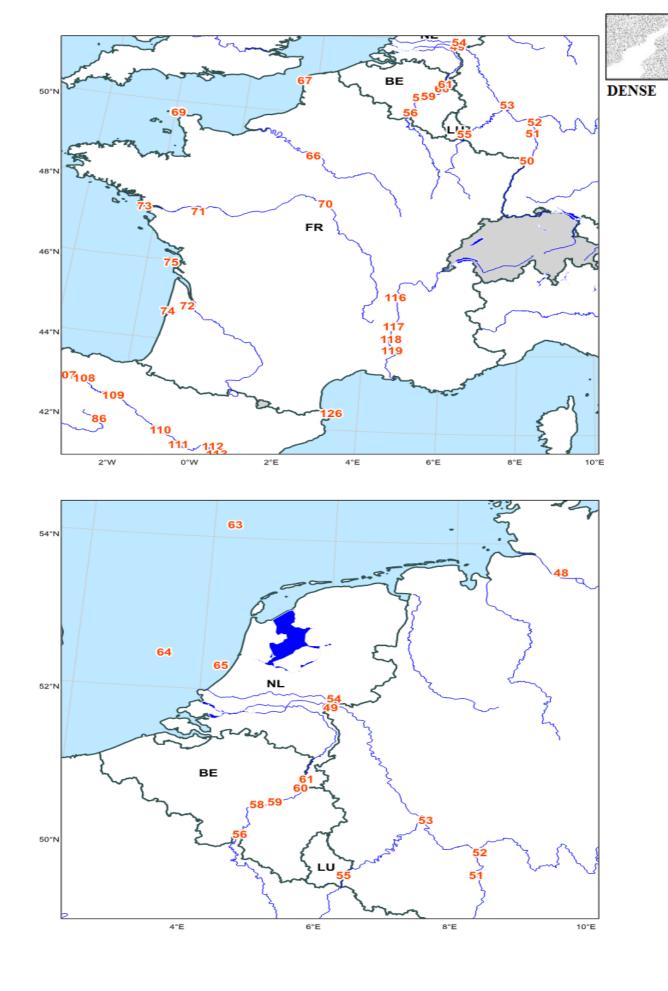



Fig. S4 Sampling locations for residual- β and 137 Cs in surface water considered in Tables S1 – S30

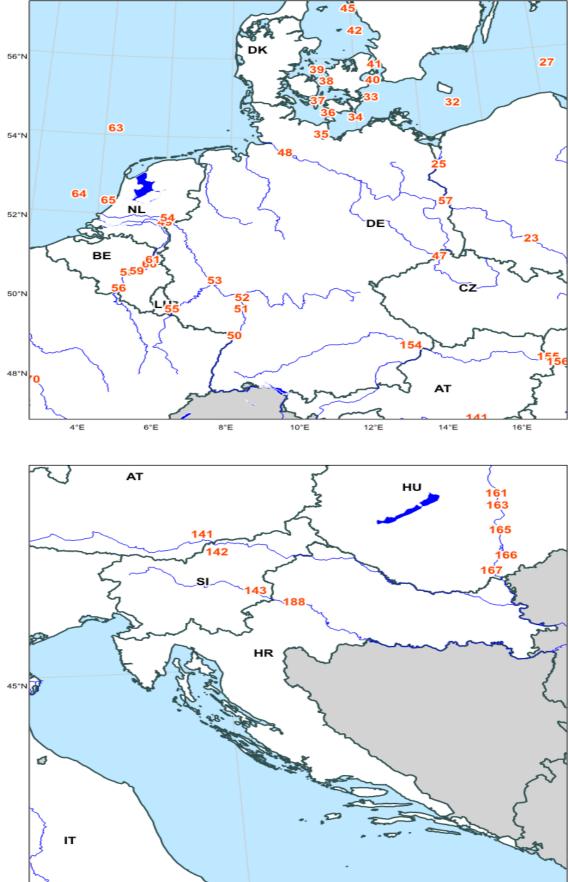


Fig. S5 Sampling locations for residual- β and ^{137}Cs in surface water considered in Tables S1 - S30

15°E

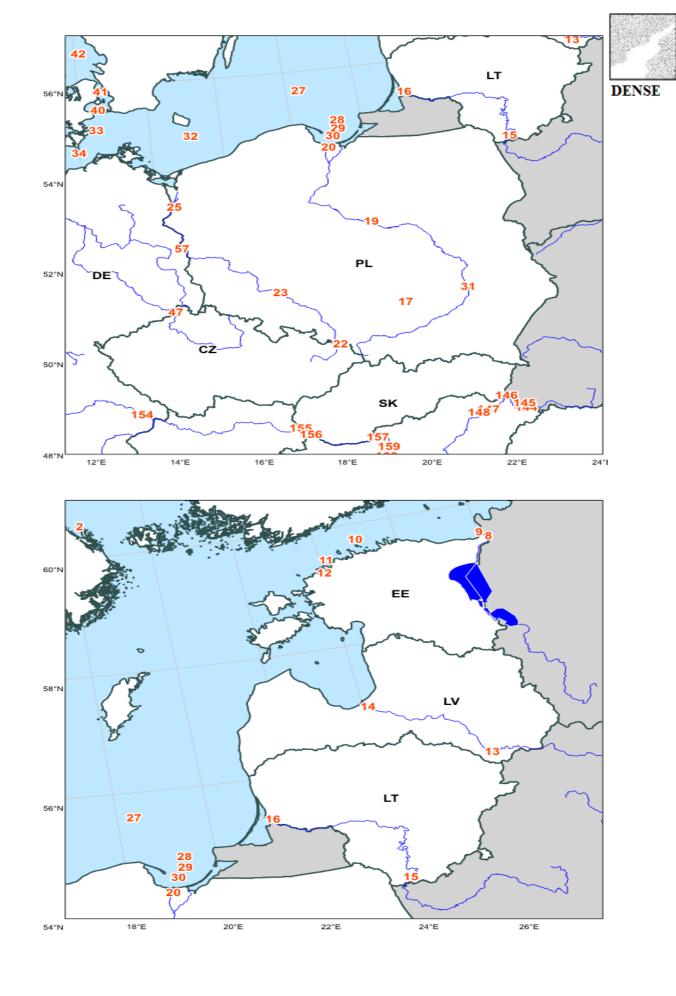


Fig. S6 Sampling locations for residual-β and 137 Cs in surface water considered in Tables S1 – S30

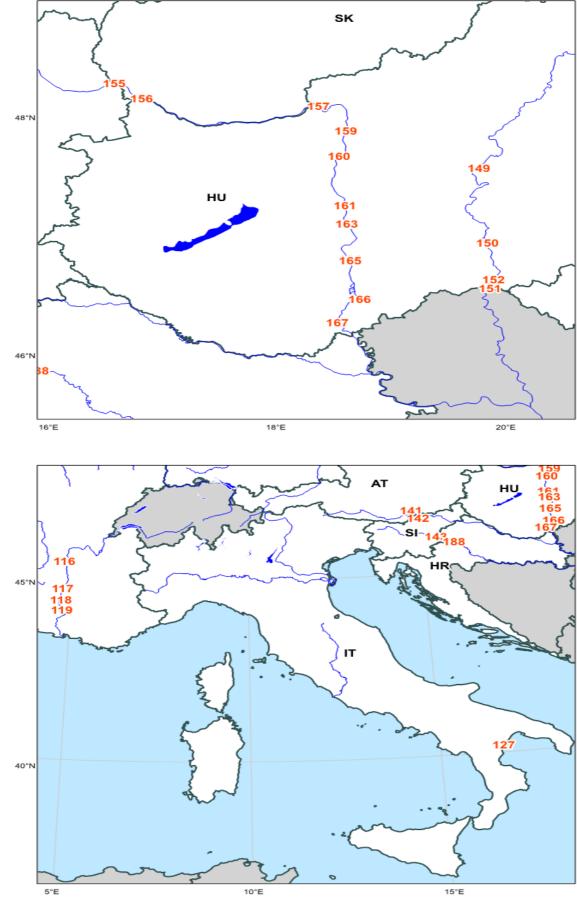


Fig. S7 Sampling locations for residual- β and 137 Cs in surface water considered in Tables S1 - S30

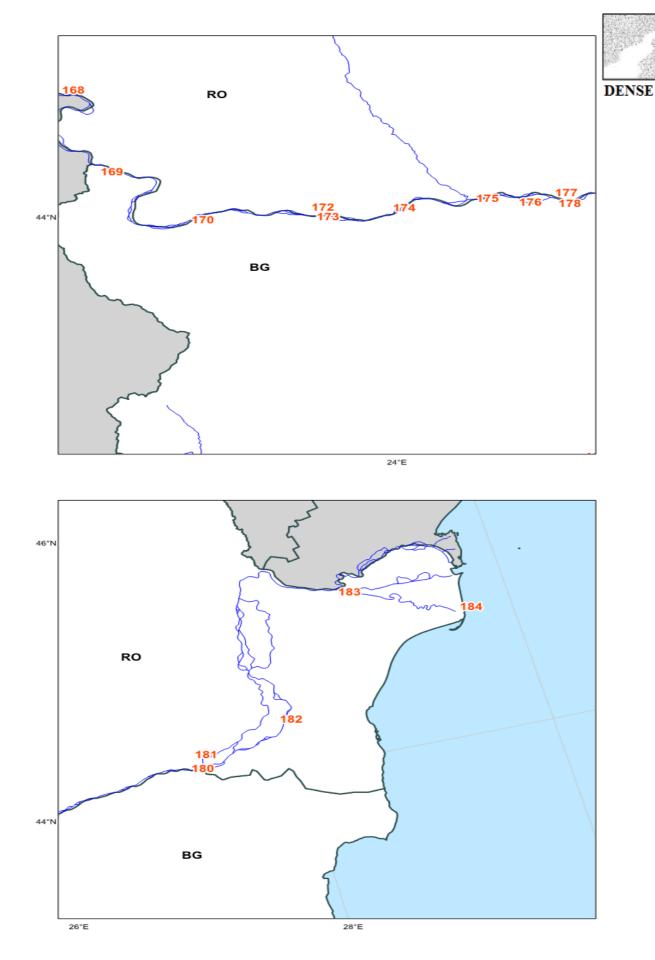


Fig. S8 Sampling locations for residual- β and ^{137}Cs in surface water considered in Tables S1 - S30

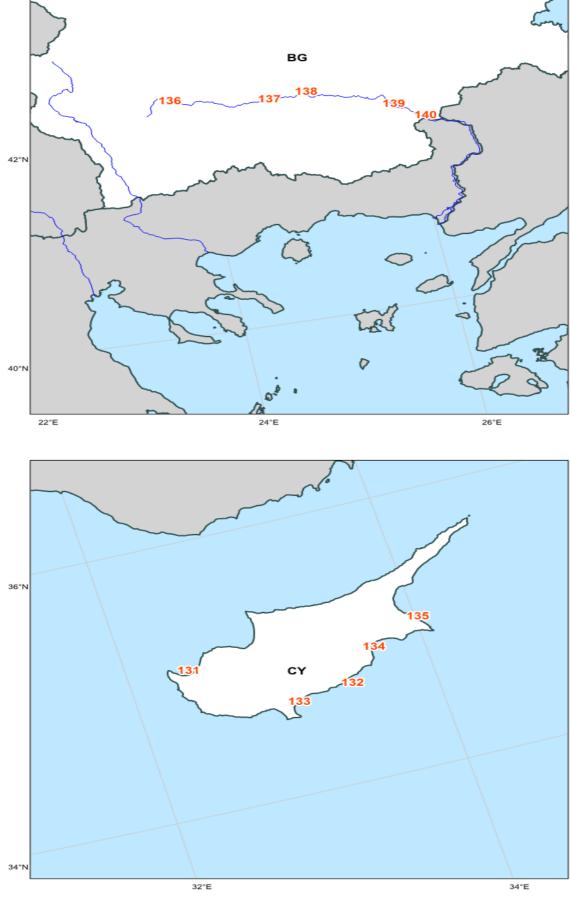


Fig. S9 Sampling locations for residual- β and 137 Cs in surface water considered in Tables S1 - S30

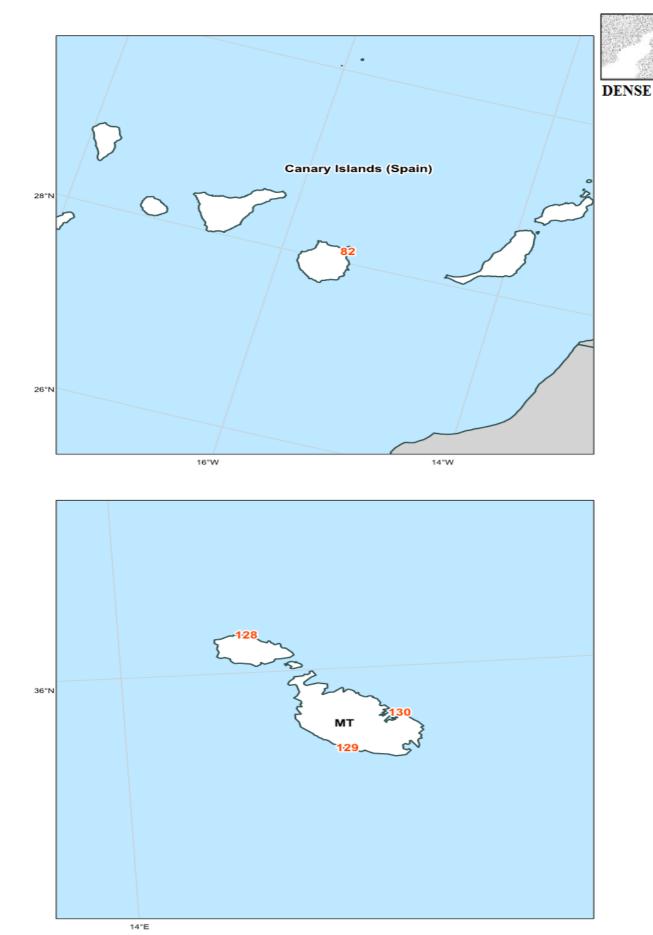


Fig. S10 Sampling locations for residual- β and 137 Cs in surface water considered in Tables S1 - S30

Time averages

Table S1:

YEAR

SAMPLE TYPE : surface water (Bq I -1)

Catchment		Locality		N	1st quarter	2nd quarter	3rd quarter	4th quarter	Annual avg.	Monthly max	N
Indalsaelven	1	Oestersund-Storsjoen	SE								
Gulf Of Bothnia	2	Forsmark (F135)	SE								
	3	Bottenhavet (C14)	SE								
	4	Bottenviken (A5)	SE								
Kemijoki	5	Kemi	FI								
Oulujoki	6	Oulu	FI								
Kymijoki	7	Kotka	FI								
Narva	8	Narva	EE								
Gulf Of Finland	9	Gulf Of Finland, N8	EE								
	10	Gulf Of Finland, EE17	EE								
	11	Gulf Of Finland, PE	EE								
	12	Gulf Of Finland, PW	EE								
Daugava	13	Daugavpils	LV								
	14	Riga	LV								
Neman	15	Above Druskininkai	LT								
	16	Skirvyte	LT								
Vistula	17	Krakow Tyniec	PL								
	18	Annopol	PL								
	19	Plock	PL								
	20	Kiezmark	PL								
Oder	21	Bohumin	CZ	4	< RL	< RL	< RL	< RL	< RL	< RL	
	22	Chalupki	PL								
	23	Wroclaw	PL								
	25	Krajnik	PL								
Baltic Sea	26	Oskarshamn (S36)	SE								
	27	Baltic Sea P-140	PL								
	28	Baltic Sea P-1	PL								
	29	Baltic Sea P-116	PL								
	30	Baltic Sea P-110	PL								
	31	Baltic Sea P-5	PL								
	32	Baltic Sea P-39	PL								
	33	Moen	DK								
	34	Gedser Odde	DK								
	35	Luebeck Bay	DE								
	36	Femern Baelt	DK								
	37	Langeland Baelt	DK								
The Great Belt	38	Halskov Rev	DK								
	39	Asnaes Rev	DK								
The Sound	40	The Sound S	DK								
	41	The Sound N(A)	DK								

RL: reporting level for residual- β In surface water, i.e. 6.0 E-01 BQ/L (see Appendix B)

N: Number of measurements considered in calculating the annual concentration. Monthly max: Maximum monthly average in the year.
M: Month during which the maximum occurred.

Table S2: Time averages

YEAR 2012

SAMPLE TYPE : surface water (Bq I -1)

Catchment		Locality		N	1st quarter	2nd quarter	3rd quarter	4th quarter	Annual avg.	Monthly max	M
Kattegat	42	Kattegat-413	DK								
	45	Ringhals (35)	SE								
Skagerrak	46	Fjaellbacka	SE								
Elbe	47	Hrensko	CZ	4	< RL	< RL	< RL	< RL	< RL	< RL	7
	48	Wedel	DE								
	49	Cuxhaven	DE								
Rhine	50	Lauterbourg	FR								
	51	Worms	DE								
	52	Trebur	DE								
	53	Koblenz	DE								
	54	Lobith	NL								
Moselle	55	Wincheringen	DE								
Meuse	56	Chooz (Givet)	FR								
	57	Heer-Agimont	BE								
	58	Andenne	BE								
	59	Huy	BE								
	60	Lixhe	BE								
	61	Eijsden	NL								
North Sea	63	Terschelling, 100 km from	NL								
	64	coast Noordwijk, 70 km from coast	NL								
	65	Noordwijk, 10 km from coast	NL								
Seine	66	Le Vesinet	FR								
Channel	67	Wimereux	FR								
	68	Jobourg	FR								
	69	La Hague-Jardeheu	FR								
Loire	70	Dampierre en Burly	FR								
	71	Angers (EDF)	FR								
Garonne	72	Bordeaux	FR								
Atlantic Ocean	73	Pornichet	FR								
	74	Arcachon	FR								
	75	St Pierre D'Oleron	FR								
	78	Cabo Silleiro	ES						Δ		
	79	Isla Christina	ES						Δ		
	80	Puerto de Cadiz	ES						Δ		
	81	Estrecho de Gibraltar	ES						Δ		
	82	Puerto De Las Palmas	ES						Δ		

RL: reporting level for residual- β In surface water, i.e. 6.0 E-01 BQ/L (see Appendix B) Δ : only constraint (<) values above the reporting level were reported

N: Number of measurements considered in calculating the annual concentration. Monthly max: Maximum monthly average in the year.

M: Month during which the maximum occurred.

Table S3:

YEAR

SAMPLE TYPE surface water (Bq I -1)

Time averages

Catchment		Locality		N	1st quarter	2nd quarter	3rd quarter	4th quarter	Annual avg.	Monthly max	М
Mino	83	Lugo	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	4
	84	Orense	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	4
	85	Caldelas De Tuy	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	9
Duero	86	Garray	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	7
	87	Quintanilla	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	4
	88	Villalcampo	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	1
Tagus	89	Trillo Arriba	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	9
	90	Zorita Arriba	ES	12	< RL	< RL	< RL	< RL	< RL	< RL	10
	91	Aranjuez	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	6
	92	Toledo	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	6
	93	Talavera	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	6
	94	Valdecanas	ES	12	< RL	< RL	< RL	< RL	< RL	< RL	9
	95	Embalse de Torrejon	ES	17	< RL	< RL	< RL	< RL	< RL	< RL	6
	96	Vila Velha de Rodao	PT								
	97	Valada Do Ribatejo	PT	8	< RL	< RL	< RL	< RL	< RL	< RL	5
Guadiana	98	Balbuena	ES	2	< RL		< RL		< RL	< RL	3
	99	Puente Palmas	ES	3	< RL	< RL	< RL		< RL	< RL	3
	100	San Lucar	ES	3	< RL	< RL	< RL		< RL	< RL	9
Jucar	103	Venta De Juan Romero	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	11
	104	Embalse De Alarcon	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	11
	105	Alcala Del Jucar	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	11
	106	Cofrentes Abajo	ES	12	< RL	< RL	< RL	< RL	< RL	< RL	2
Ebro	107	Garona Arriba	ES	13	< RL	< RL	< RL	< RL	< RL	< RL	1
	108	Garona Abajo	ES	26	< RL	< RL	< RL	< RL	< RL	< RL	2
	109	Mendavia	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	10
	110	Zaragoza-Rio	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	7
	111	Sastago	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	7
	112	Ribarroja	ES	12	< RL	< RL	< RL	< RL	< RL	< RL	10
	113	Asco Abajo	ES	26	< RL	< RL	< RL	< RL	< RL	< RL	1
	114	Garcia	ES								
	115	Cherta	ES								
Rhone	116	Saint Alban	FR								
	117	Cruas (Aval)	FR								
	118	Tricastin	FR								
	119	Roquemaure (Marcoule)	FR								

RL: reporting level for residual- β In surface water, i.e. 6.0 E-01 BQ/L (see Appendix B)

N: Number of measurements considered in calculating the annual concentration. Monthly max: Maximum monthly average in the year.

M: Month during which the maximum occurred.

Table S4: Time averages

YEAR : 2012

SAMPLE TYPE : surface water (Bq I ⁻¹)

NUCLIDE CATEGORY : residual-β

Catchment		Locality		N	1st quarter	2nd quarter	3rd quarter	4th quarter	Annual avg.	Monthly max	M
Mediterranean Sea	120	Garrucha	ES						Δ		
269	122	Cabo de San Antonio	ES						Δ		
	123	Puerto de Palma	ES						Δ		
	124	Puerto de Tarragona	ES						Δ		
	126	Cabo de Creus	ES						Δ		
	127	Rotondella	IT								
	128	Xwejni	МТ								
	129	Lapsi	МТ								
	130	Wied Ghammieq	МТ								
	131	Polis	CY								
	132	Paphos	CY								
	133	Limassol	CY								
	134	Larnaca	CY								
	135	Paralimni	CY								
Maritsa	136	Kostenec	BG								
	137	Plovdiv	BG								
	138	Mirovo	BG								
	139	Harmanli	BG								
	140	Svilengrad	BG								
Drau	141	Schwabegg	AT	24	< RL	< RL	< RL	< RL	< RL	< RL	8
	142	Dravograd	SI								
Sava	143	Krsko	SI								
Tisza	144	Tiszabecs	HU								
	145	Gergelyiugornya	HU								
	146	Zahony	HU								
	147	Tiszabercel	HU								
	148	Rakamaz	HU								
	149	Szolnok	HU								
	150	Mindszent	HU								
	151	Tiszasziget II	HU								
	152	Tiszasziget I	HU								

RL: reporting level for residual- β In surface water, i.e. 6.0 E-01 BQ/L (see Appendix B) Δ : only constraint (<) values above the reporting level were reported

N: Number of measurements considered in calculating the annual concentration. Monthly max: Maximum monthly average in the year.

M: Month during which the maximum occurred.

YEAR

Table S5:

SAMPLE TYPE : surface water (Bq I -1)

Time averages

Catchment		Locality		N	1st quarter	2nd quarter	3rd quarter	4th quarter	Annual avg.	Monthly max	N
Danube	154	Vilshofen	DE								
	155	Wolfsthal	AT	12	< RL	< RL	< RL	< RL	< RL	< RL	
	156	Rajka	HU								
	157	Szob	HU								
	158	Budapest - North I	HU								
	159	Budapest - Danube	HU								
	160	Nagyteteny	HU								
	161	Dunaujvaros	HU								
	162	Dunafoldvar II	HU								
	163	Dunafoldvar I	HU								
	164	Kalocsa	HU								
	165	Gerjen	HU								
	166	Ваја	HU								
	167	Mohacs	HU								
	168	Drobeta Turnu Severin	RO								
	169	Novo Selo	BG								
	170	Ruse	BG								
	172	Bechet	RO								
	173	Oriahovo	BG								
	174	Baykal	BG								
	175	Nikopol	BG								
	176	Belene	ВG								
	177	Zimnicea	RO								
	178	Svishtov	ВG								
	179	Ruse	BG								
	180	Silistra	ВG								
	181	Calarasi	RO								
	182	Cernavoda*	RO								
	183	Tulcea	RO								
	184	Sfantu Gheorge Tulcea	RO								
Clyde	185	Clyde Estuary	UK								
Lough Neagh	186	Lough Neagh	UK								
Faughan	187	Faughan	UK								
Sava	188	Zagreb	HR								

RL: reporting level for residual- β In surface water, i.e. 6.0 E-01 BQ/L (see Appendix B) *: sampling location downstream of a nuclear power plant

N: Number of measurements considered in calculating the annual concentration. Monthly max: Maximum monthly average in the year.

M: Month during which the maximum occurred.

Table S6: Time averages

YEAR

SAMPLE TYPE surface water (Bq I -1)

NUCLIDE CATEGORY: $residual\text{-}\beta$

Catchment		Locality		N	1st quarter	2nd quarter	3rd quarter	4th quarter	Annual avg.	Monthly max	M
Indalsaelven	1	Oestersund-Storsjoen	SE								
Gulf Of Bothnia	2	Forsmark (F135)	SE								
	3	Bottenhavet (C14)	SE								
	4	Bottenviken (A5)	SE								
Kemijoki	5	Kemi	FI								
Oulujoki	6	Oulu	FI								
Kymijoki	7	Kotka	FI								
Narva	8	Narva	EE								
Gulf Of Finland	9	Gulf Of Finland, N8	EE								
	10	Gulf Of Finland, EE17	EE								
	11	Gulf Of Finland, PE	EE								
	12	Gulf Of Finland, PW	EE								
Daugava	13	Daugavpils	LV								
	14	Riga	LV								
Neman	15	Above Druskininkai	LT								
	16	Skirvyte	LT								
Vistula	17	Krakow Tyniec	PL								
	18	Annopol	PL								
	19	Plock	PL								
	20	Kiezmark	PL								
Oder	21	Bohumin	CZ	4	< RL	< RL	< RL	< RL	< RL	< RL	8
	22	Chalupki	PL								
	23	Wroclaw	PL								
	25	Krajnik	PL								
Baltic Sea	26	Oskarshamn (S36)	SE								
	27	Baltic Sea P-140	PL								
	28	Baltic Sea P-1	PL								
	29	Baltic Sea P-116	PL								
	30	Baltic Sea P-110	PL								
	31	Baltic Sea P-5	PL								
	32	Baltic Sea P-39	PL								
	33	Moen	DK								
	34	Gedser Odde	DK								
	35	Luebeck Bay	DE								
	36	Femern Baelt	DK								
	37	Langeland Baelt	DK								
The Great Belt	38	Halskov Rev	DK								
	39	Asnaes Rev	DK								
The Sound	40	The Sound S	DK								
	41	The Sound N(A)	DK								

RL: reporting level for residual- β In surface water, i.e. 6.0 E-01 BQ/L (see Appendix B)

N: Number of measurements considered in calculating the annual concentration. Monthly max: Maximum monthly average in the year.

M: Month during which the maximum occurred.

Table S7: Time averages

YEAR : 2013

SAMPLE TYPE : surface water (Bq I ⁻¹)

Catchment		Locality		N	1st quarter	2nd quarter	3rd quarter	4th quarter	Annual avg.	Monthly max	M
Kattegat	42	Kattegat-413	DK								
	45	Ringhals (35)	SE								
Skagerrak	46	Fjaellbacka	SE								
Elbe	47	Hrensko	CZ	5	< RL	< RL	< RL	< RL	< RL	< RL	-
	48	Wedel	DE								
	49	Cuxhaven	DE								
Rhine	50	Lauterbourg	FR								
	51	Worms	DE								
	52	Trebur	DE								
	53	Koblenz	DE								
	54	Lobith	NL								
Moselle	55	Wincheringen	DE								
Meuse	56	Chooz (Givet)	FR								
	57	Heer-Agimont	BE								
	58	Andenne	BE								
	59	Huy	BE								
	60	Lixhe	BE								
	61	Eijsden	NL								
North Sea	63	Terschelling, 100 km from	NL								
	64	coast Noordwijk, 70 km from coast	NL								
	65	Noordwijk, 10 km from coast	NL								
Seine	66	Le Vesinet	FR								
Channel	67	Wimereux	FR								
	68	Jobourg	FR								
	69	La Hague-Jardeheu	FR								
Loire	70	Dampierre en Burly	FR								
	71	Angers (EDF)	FR								
Garonne	72	Bordeaux	FR								
Atlantic Ocean	73	Pornichet	FR								
	74	Arcachon	FR								
	75	St Pierre D'Oleron	FR								
	78	Cabo Silleiro	ES	1			8.6E-01		8.6E-01	8.6E-01	ě
	79	Isla Christina	ES						Δ		
	80	Puerto de Cadiz	ES						Δ		
	81	Estrecho de Gibraltar	ES						Δ		
	82	Puerto De Las Palmas	ES						Δ		

RL: reporting level for residual- β In surface water, i.e. 6.0 E-01 BQ/L (see Appendix B) Δ : only constraint (<) values above the reporting level were reported

N: Number of measurements considered in calculating the annual concentration. Monthly max: Maximum monthly average in the year.

M: Month during which the maximum occurred.

Table S8: Time averages

YEAR 2013

SAMPLE TYPE : surface water (Bq I -1)

NUCLIDE CATEGORY: $residual\text{-}\beta$

Catchment		Locality		N	1st quarter	2nd quarter	3rd quarter	4th quarter	Annual avg.	Monthly max	М
Mino	83	Lugo	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	2
	84	Orense	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	7
	85	Caldelas De Tuy	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	7
Duero	86	Garray	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	7
	87	Quintanilla	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	4
	88	Villalcampo	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	1
Tagus	89	Trillo Arriba	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	3
	90	Zorita Arriba	ES	12	< RL	< RL	< RL	< RL	< RL	< RL	12
	91	Aranjuez	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	12
	92	Toledo	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	9
	93	Talavera	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	9
	94	Valdecanas	ES	12	< RL	< RL	< RL	< RL	< RL	< RL	2
	95	Embalse de Torrejon	ES	16	< RL	< RL	< RL	< RL	< RL	< RL	9
	96	Vila Velha de Rodao	PT								
	97	Valada Do Ribatejo	PT	1				< RL	< RL	< RL	12
Guadiana	98	Balbuena	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	6
	99	Puente Palmas	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	9
	100	San Lucar	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	3
Jucar	103	Venta De Juan Romero	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	11
	104	Embalse De Alarcon	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	8
	105	Alcala Del Jucar	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	8
	106	Cofrentes Abajo	ES	12	< RL	< RL	< RL	< RL	< RL	< RL	12
Ebro	107	Garona Arriba	ES	13	< RL	< RL	< RL	< RL	< RL	< RL	8
	108	Garona Abajo	ES	26	< RL	< RL	< RL	< RL	< RL	< RL	12
	109	Mendavia	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	1
	110	Zaragoza-Rio	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	10
	111	Sastago	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	1
	112	Ribarroja	ES	11	< RL	< RL	< RL	< RL	< RL	< RL	9
	113	Asco Abajo	ES	26	< RL	< RL	< RL	< RL	< RL	< RL	9
	114	Garcia	ES								
	115	Cherta	ES								
Rhone	116	Saint Alban	FR								
	117	Cruas (Aval)	FR								
	118	Tricastin	FR								
	119	Roquemaure (Marcoule)	FR								

RL: reporting level for residual- β In surface water, i.e. 6.0 E-01 BQ/L (see Appendix B)

N: Number of measurements considered in calculating the annual concentration. Monthly max: Maximum monthly average in the year.

M: Month during which the maximum occurred.

Table S9:

Time averages

YEAR

SAMPLE TYPE

surface water (Bq I -1)

NUCLIDE CATEGORY:

residual-β

2013

Catchment		Locality		N	1st quarter	2nd quarter	3rd quarter	4th quarter	Annual avg.	Monthly max	М
Mediterranean	120	Garrucha	ES						Δ		
Sea	122	Cabo de San Antonio	ES						Δ		
	123	Puerto de Palma	ES						Δ		
	124	Puerto de Tarragona	ES						Δ		
	126	Cabo de Creus	ES						Δ		
	127	Rotondella	IT								
	128	Xwejni	МТ								
	129	Lapsi	MT								
	130	Wied Ghammieq	MT								
	131	Polis	CY								
	132	Paphos	CY								
	133	Limassol	CY								
	134	Larnaca	CY								
	135	Paralimni	CY								
Maritsa	136	Kostenec	BG								
	137	Plovdiv	BG								
	138	Mirovo	BG								
	139	Harmanli	BG								
	140	Svilengrad	BG								
Drau	141	Schwabegg	AT	24	< RL	< RL	< RL	< RL	< RL	< RL	10
	142	Dravograd	SI								
Sava	143	Krsko	SI								
Tisza	144	Tiszabecs	HU								
	145	Gergelyiugornya	HU								
	146	Zahony	HU								
	147	Tiszabercel	HU								
	148	Rakamaz	HU								
	149	Szolnok	HU								
	150	Mindszent	HU								
	151	Tiszasziget II	HU								
	152	Tiszasziget I	HU								

RL: reporting level for residual- β In surface water, i.e. 6.0 E-01 BQ/L (see Appendix B) Δ : only constraint (<) values above the reporting level were reported

N: Number of measurements considered in calculating the annual concentration. Monthly max: Maximum monthly average in the year. M: Month during which the maximum occurred.

Table S10: Time averages

YEAR 2013

surface water (Bq I ⁻¹) **SAMPLE TYPE**

NUCLIDE CATEGORY: residual-β

Catchment		Locality		N	1st quarter	2nd quarter	3rd quarter	4th quarter	Annual avg.	Monthly max	IV
Danube	154	Vilshofen	DE								
	155	Wolfsthal	AT	12	< RL	< RL	< RL	< RL	< RL	< RL	
	156	Rajka	HU								
	157	Szob	HU								
	158	Budapest - North I	HU								
	159	Budapest - Danube	HU								
	160	Nagyteteny	HU								
	161	Dunaujvaros	HU								
	162	Dunafoldvar II	HU								
	163	Dunafoldvar I	HU								
	164	Kalocsa	HU								
	165	Gerjen	HU								
	166	Ваја	HU								
	167	Mohacs	HU								
	168	Drobeta Turnu Severin	RO								
	169	Novo Selo	BG								
	170	Ruse	BG								
	172	Bechet	RO								
	173	Oriahovo	BG								
	174	Baykal	BG								
	175	Nikopol	BG								
	176	Belene	BG								
	177	Zimnicea	RO								
	178	Svishtov	BG								
	179	Ruse	BG								
	180	Silistra	BG								
	181	Calarasi	RO								
	182	Cernavoda*	RO								
	183	Tulcea	RO								
	184	Sfantu Gheorge Tulcea	RO								
Clyde	185	Clyde Estuary	UK								
Lough Neagh	186	Lough Neagh	UK								
Faughan	187	Faughan	UK								
Sava	188	Zagreb	HR								

RL: reporting level for residual- β In surface water, i.e. 6.0 E-01 BQ/L (see Appendix B) *: sampling location downstream of a nuclear power plant

N: Number of measurements considered in calculating the annual concentration. Monthly max: Maximum monthly average in the year. M: Month during which the maximum occurred.

Table S11: Time averages

YEAR

SAMPLE TYPE surface water (Bq I -1)

Catchment		Locality		N	1st quarter	2nd quarter	3rd quarter	4th quarter	Annual avg.	Monthly max	N
Indalsaelven	1	Oestersund-Storsjoen	SE								
Gulf Of Bothnia	2	Forsmark (F135)	SE								
	3	Bottenhavet (C14)	SE								
	4	Bottenviken (A5)	SE								
Kemijoki	5	Kemi	FI								
Oulujoki	6	Oulu	FI								
Kymijoki	7	Kotka	FI								
Narva	8	Narva	EE								
Gulf Of Finland	9	Gulf Of Finland, N8	EE								
	10	Gulf Of Finland, EE17	EE								
	11	Gulf Of Finland, PE	EE								
	12	Gulf Of Finland, PW	EE								
Daugava	13	Daugavpils	LV								
	14	Riga	LV								
Neman	15	Above Druskininkai	LT								
	16	Skirvyte	LT								
Vistula	17	Krakow Tyniec	PL								
	18	Annopol	PL								
	19	Plock	PL								
	20	Kiezmark	PL								
Oder	21	Bohumin	CZ								
	22	Chalupki	PL								
	23	Wroclaw	PL								
	25	Krajnik	PL								
Baltic Sea	26	Oskarshamn (S36)	SE								
	27	Baltic Sea P-140	PL								
	28	Baltic Sea P-1	PL								
	29	Baltic Sea P-116	PL								
	30	Baltic Sea P-110	PL								
	31	Baltic Sea P-5	PL								
	32	Baltic Sea P-39	PL								
	33	Moen	DK								
	34	Gedser Odde	DK								
	35	Luebeck Bay	DE								
	36	Femern Baelt	DK								
	37	Langeland Baelt	DK								
The Great Belt	38	Halskov Rev	DK								
C. Cat Boit	39	Asnaes Rev	DK								
The Sound	40	The Sound S	DK								
The Count	41	The Sound N(A)	DK								

RL: reporting level for residual- β In surface water, i.e. 6.0 E-01 BQ/L (see Appendix B)

N: Number of measurements considered in calculating the annual concentration. Monthly max: Maximum monthly average in the year.
M: Month during which the maximum occurred.

Table S12: Time averages

YEAR : 2014

SAMPLE TYPE : surface water (Bq I ⁻¹)

NUCLIDE CATEGORY : residual-β

Catchment		Locality		N	1st quarter	2nd quarter	3rd quarter	4th quarter	Annual avg.	Monthly max	М
Kattegat	42	Kattegat-413	DK								
	45	Ringhals (35)	SE								
Skagerrak	46	Fjaellbacka	SE								
Elbe	47	Hrensko	CZ								
	48	Wedel	DE								
	49	Cuxhaven	DE								
Rhine	50	Lauterbourg	FR								
	51	Worms	DE								
	52	Trebur	DE								
	53	Koblenz	DE								
	54	Lobith	NL								
Moselle	55	Wincheringen	DE								
Meuse	56	Chooz (Givet)	FR								
	57	Heer-Agimont	BE								
	58	Andenne	BE								
	59	Huy	BE								
	60	Lixhe	BE								
	61	Eijsden	NL								
North Sea	63	Terschelling, 100 km from	NL								
	64	coast Noordwijk, 70 km from coast	NL								
	65	Noordwijk, 10 km from coast	NL								
Seine	66	Le Vesinet	FR								
Channel	67	Wimereux	FR								
	68	Jobourg	FR								
	69	La Hague-Jardeheu	FR								
Loire	70	Dampierre en Burly	FR								
	71	Angers (EDF)	FR								
Garonne	72	Bordeaux	FR								
Atlantic Ocean	73	Pornichet	FR								
	74	Arcachon	FR								
	75	St Pierre D'Oleron	FR								
	78	Cabo Silleiro	ES						Δ		
	79	Isla Christina	ES						Δ		
	80	Puerto de Cadiz	ES						Δ		
	81	Estrecho de Gibraltar	ES						Δ		
	82	Puerto De Las Palmas	ES						Δ		

RL: reporting level for residual- β In surface water, i.e. 6.0 E-01 BQ/L (see Appendix B) Δ : only constraint (<) values above the reporting level were reported

N: Number of measurements considered in calculating the annual concentration. Monthly max: Maximum monthly average in the year.

M: Month during which the maximum occurred.

YEAR

Table S13: Time averages

SAMPLE TYPE

surface water (Bq I -1)

NUCLIDE CATEGORY:

residual-β

Catchment		Locality		N	1st quarter	2nd quarter	3rd quarter	4th quarter	Annual avg.	Monthly max	М
Mino	83	Lugo	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	4
	84	Orense	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	4
	85	Caldelas De Tuy	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	4
Duero	86	Garray	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	1
	87	Quintanilla	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	1
	88	Villalcampo	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	1
Tagus	89	Trillo Arriba	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	3
	90	Zorita Arriba	ES	12	< RL	< RL	< RL	< RL	< RL	< RL	1
	91	Aranjuez	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	3
	92	Toledo	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	3
	93	Talavera	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	6
	94	Valdecanas	ES	12	< RL	< RL	< RL	< RL	< RL	< RL	10
	95	Embalse de Torrejon	ES	16	< RL	< RL	< RL	< RL	< RL	< RL	9
	96	Vila Velha de Rodao	PT								
	97	Valada Do Ribatejo	PT	1		< RL			< RL	< RL	4
Guadiana	98	Balbuena	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	6
	99	Puente Palmas	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	12
	100	San Lucar	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	9
Jucar	103	Venta De Juan Romero	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	2
	104	Embalse De Alarcon	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	11
	105	Alcala Del Jucar	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	8
	106	Cofrentes Abajo	ES	12	< RL	< RL	< RL	< RL	< RL	< RL	1
Ebro	107	Garona Arriba	ES	14	< RL	< RL	< RL	< RL	< RL	< RL	7
	108	Garona Abajo	ES	27	< RL	< RL	< RL	< RL	< RL	< RL	2
	109	Mendavia	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	4
	110	Zaragoza-Rio	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	10
	111	Sastago	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	7
	112	Ribarroja	ES	12	< RL	< RL	< RL	< RL	< RL	< RL	10
	113	Asco Abajo	ES	25	< RL	< RL	< RL	< RL	< RL	< RL	9
	114	Garcia	ES								
	115	Cherta	ES								
Rhone	116	Saint Alban	FR								
	117	Cruas (Aval)	FR								
	118	Tricastin	FR								
	119	Roquemaure (Marcoule)	FR								

RL: reporting level for residual- β In surface water, i.e. 6.0 E-01 BQ/L (see Appendix B)

N: Number of measurements considered in calculating the annual concentration. Monthly max: Maximum monthly average in the year.

M: Month during which the maximum occurred.

Table S14: Time averages

YEAR : 2014

SAMPLE TYPE : surface water (Bq I ⁻¹)

NUCLIDE CATEGORY : residual-β

Catchment		Locality		N	1st quarter	2nd quarter	3rd quarter	4th quarter	Annual avg.	Monthly max	M
Mediterranean Sea	120	Garrucha	ES						Δ		
Sea	122	Cabo de San Antonio	ES						Δ		
	123	Puerto de Palma	ES						Δ		
	124	Puerto de Tarragona	ES						Δ		
	126	Cabo de Creus	ES						Δ		
	127	Rotondella	IT								
	128	Xwejni	МТ								
	129	Lapsi	МТ								
	130	Wied Ghammieq	МТ								
	131	Polis	CY								
	132	Paphos	CY								
	133	Limassol	CY								
	134	Larnaca	CY								
	135	Paralimni	CY								
Maritsa	136	Kostenec	BG								
	137	Plovdiv	BG								
	138	Mirovo	BG								
	139	Harmanli	BG								
	140	Svilengrad	BG								
Drau	141	Schwabegg	AT	24	< RL	< RL	< RL	< RL	< RL	< RL	2
	142	Dravograd	SI								
Sava	143	Krsko	SI								
Tisza	144	Tiszabecs	HU								
	145	Gergelyiugornya	HU								
	146	Zahony	HU								
	147	Tiszabercel	HU								
	148	Rakamaz	HU								
	149	Szolnok	HU								
	150	Mindszent	HU								
	151	Tiszasziget II	HU								
	152	Tiszasziget I	HU								

RL: reporting level for residual- β In surface water, i.e. 6.0 E-01 BQ/L (see Appendix B) Δ : only constraint (<) values above the reporting level were reported

N: Number of measurements considered in calculating the annual concentration. Monthly max: Maximum monthly average in the year.

M: Month during which the maximum occurred.

YEAR

Table S15:

:

Time averages

SAMPLE TYPE

surface water (Bq I -1)

NUCLIDE CATEGORY:

residual-β

Catchment		Locality	<u>'</u>	N	1st quarter	2nd quarter	3rd quarter	4th quarter	Annual avg.	Monthly max	M
Danube	154	Vilshofen	DE								
	155	Wolfsthal	AT	12	< RL	< RL	< RL	< RL	< RL	< RL	
	156	Rajka	HU								
	157	Szob	HU								
	158	Budapest - North I	HU								
	159	Budapest - Danube	HU								
	160	Nagyteteny	HU								
	161	Dunaujvaros	HU								
	162	Dunafoldvar II	HU								
	163	Dunafoldvar I	HU								
	164	Kalocsa	HU								
	165	Gerjen	HU								
	166	Ваја	HU								
	167	Mohacs	HU								
	168	Drobeta Turnu Severin	RO								
	169	Novo Selo	BG								
	170	Ruse	BG								
	172	Bechet	RO								
	173	Oriahovo	BG								
	174	Baykal	BG								
	175	Nikopol	BG								
	176	Belene	BG								
	177	Zimnicea	RO								
	178	Svishtov	BG								
	179	Ruse	BG								
	180	Silistra	BG								
	181	Calarasi	RO								
	182	Cernavoda*	RO								
	183	Tulcea	RO								
	184	Sfantu Gheorge Tulcea	RO								
Clyde	185	Clyde Estuary	UK								
Lough Neagh	186	Lough Neagh	UK								
Faughan	187	Faughan	UK								
Sava	188	Zagreb	HR								

RL: reporting level for residual- β In surface water, i.e. 6.0 E-01 BQ/L (see Appendix B) *: sampling location downstream of a nuclear power plant

N: Number of measurements considered in calculating the annual concentration. Monthly max: Maximum monthly average in the year.

M: Month during which the maximum occurred.

Table S16: Time averages

YEAR 2012

SAMPLE TYPE surface water (Bq I -1) **NUCLIDE CATEGORY**: caesium-137 (137Cs)

Catchment		Locality		N	1st quarter	2nd quarter	3rd quarter	4th quarter	Annual avg.	Monthly max	M
Indalsaelven	1	Oestersund-Storsjoen	SE	2		< RL	< RL		< RL	< RL	9
Gulf Of Bothnia	2	Forsmark (F135)	SE	1				< RL	< RL	< RL	10
	3	Bottenhavet (C14)	SE	1			< RL		< RL	< RL	9
	4	Bottenviken (A5)	SE	1			< RL		< RL	< RL	9
Kemijoki	5	Kemi	FI	2		< RL		< RL	< RL	< RL	5
Oulujoki	6	Oulu	FI	2		< RL		< RL	< RL	< RL	10
Kymijoki	7	Kotka	FI	2		< RL		< RL	< RL	< RL	10
Narva	8	Narva	EE	4		< RL	< RL	< RL	< RL	< RL	10
Gulf Of Finland	9	Gulf Of Finland, N8	EE	1		< RL			< RL	< RL	5
	10	Gulf Of Finland, EE17	EE	1		< RL			< RL	< RL	5
	11	Gulf Of Finland, PE	EE	1		< RL			< RL	< RL	5
	12	Gulf Of Finland, PW	EE	1		< RL			< RL	< RL	5
Daugava	13	Daugavpils	LV								
	14	Riga	LV								
Neman	15	Above Druskininkai	LT	4	< RL	< RL	< RL	< RL	< RL	< RL	10
	16	Skirvyte	LT	4	< RL	< RL	< RL	< RL	< RL	< RL	2
Vistula	17	Krakow Tyniec	PL	2		< RL	< RL		< RL	< RL	5
	18	Annopol	PL	2		< RL	< RL		< RL	< RL	5
	19	Plock	PL	2		< RL	< RL		< RL	< RL	8
	20	Kiezmark	PL	2		< RL	< RL		< RL	< RL	5
Oder	21	Bohumin	CZ	4	< RL	< RL	< RL	< RL	< RL	< RL	8
	22	Chalupki	PL	2		< RL	< RL		< RL	< RL	5
	23	Wroclaw	PL								
	25	Krajnik	PL	2		< RL	< RL		< RL	< RL	5
Baltic Sea	26	Oskarshamn (S36)	SE	1			< RL		< RL	< RL	9
	27	Baltic Sea P-140	PL								
	28	Baltic Sea P-1	PL								
	29	Baltic Sea P-116	PL								
	30	Baltic Sea P-110	PL								
	31	Baltic Sea P-5	PL	2		< RL	< RL		< RL	< RL	5
	32	Baltic Sea P-39	PL								
	33	Moen	DK	2		< RL		< RL	< RL	< RL	6
	34	Gedser Odde	DK	2		< RL		< RL	< RL	< RL	6
	35	Luebeck Bay	DE								
	36	Femern Baelt	DK	2		< RL		< RL	< RL	< RL	12
	37	Langeland Baelt	DK	2		< RL		< RL	< RL	< RL	12
The Great Belt	38	Halskov Rev	DK	2		< RL		< RL	< RL	< RL	6
	39	Asnaes Rev	DK	2		< RL		< RL	< RL	< RL	12
The Sound	40	The Sound S	DK	2		< RL		< RL	< RL	< RL	6
	41	The Sound N(A)	DK	2		< RL		< RL	< RL	< RL	12

RL: reporting level for $^{\rm 137}{\rm Cs}$ In surface water, i.e. 1.0 BQ/L (see Appendix B)

N: Number of measurements considered in calculating the annual concentration. Monthly max: Maximum monthly average in the year.

M: Month during which the maximum occurred.

YEAR

Table S17:

SAMPLE TYPE surface water (Bq I -1) **NUCLIDE CATEGORY**: caesium-137 (137Cs)

Time averages

Catchment		Locality		N	1st quarter	2nd quarter	3rd quarter	4th quarter	Annual avg.	Monthly max	М
Kattegat	42	Kattegat-413	DK	2		< RL		< RL	< RL	< RL	6
	45	Ringhals (35)	SE	2		< RL		< RL	< RL	< RL	6
Skagerrak	46	Fjaellbacka	SE	2		< RL	< RL		< RL	< RL	4
Elbe	47	Hrensko	CZ	4	< RL	< RL	< RL	< RL	< RL	< RL	10
	48	Wedel	DE	11	< RL	< RL	< RL	< RL	< RL	< RL	11
	49	Cuxhaven	DE	7	< RL	< RL	< RL	< RL	< RL	< RL	11
Rhine	50	Lauterbourg	FR								
	51	Worms	DE	11	< RL	< RL	< RL	< RL	< RL	< RL	4
	52	Trebur	DE	16	< RL	< RL	< RL	< RL	< RL	< RL	11
	53	Koblenz	DE	21	< RL	< RL	< RL	< RL	< RL	< RL	11
	54	Lobith	NL								
Moselle	55	Wincheringen	DE	11	< RL	< RL	< RL	< RL	< RL	< RL	9
Meuse	56	Chooz (Givet)	FR								
	57	Heer-Agimont	BE	4		< RL	< RL	< RL	< RL	< RL	10
	58	Andenne	BE	28	< RL	< RL	< RL	< RL	< RL	< RL	10
	59	Huy	BE	26	< RL	< RL	< RL	< RL	< RL	< RL	4
	60	Lixhe	BE	28	< RL	< RL	< RL	< RL	< RL	< RL	4
	61	Eijsden	NL								
North Sea	63	Terschelling, 100 km from coast	NL								
	64	Noordwijk, 70 km from coast	NL								
	65	Noordwijk, 10 km from coast	NL								
Seine	66	Le Vesinet	FR								
Channel	67	Wimereux	FR								
	68	Jobourg	FR								
	69	La Hague-Jardeheu	FR								
Loire	70	Dampierre en Burly	FR								
	71	Angers (EDF)	FR								
Garonne	72	Bordeaux	FR								
Atlantic Ocean	73	Pornichet	FR								
	74	Arcachon	FR								
	75	St Pierre D'Oleron	FR								
	78	Cabo Silleiro	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	3
	79	Isla Christina	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	5
	80	Puerto de Cadiz	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	5
	81	Estrecho de Gibraltar	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	3
	82	Puerto De Las Palmas	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	3

RL: reporting level for 137 Cs In surface water, i.e. 1.0 BQ/L (see Appendix B)

N: Number of measurements considered in calculating the annual concentration. Monthly max: Maximum monthly average in the year.

M: Month during which the maximum occurred.

Table S18: Time averages

YEAR : 2012

SAMPLE TYPE : surface water (Bq I ⁻¹) NUCLIDE CATEGORY : caesium-137 (¹³⁷Cs)

Catchment		Locality		N	1st quarter	2nd quarter	3rd quarter	4th quarter	Annual avg.	Monthly max	M
Mino	83	Lugo	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	4
	84	Orense	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	1
	85	Caldelas De Tuy	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	1
Duero	86	Garray	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	4
	87	Quintanilla	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	7
	88	Villalcampo	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	4
Tagus	89	Trillo Arriba	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	3
	90	Zorita Arriba	ES	12	< RL	< RL	< RL	< RL	< RL	< RL	2
	91	Aranjuez	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	3
	92	Toledo	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	3
	93	Talavera	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	12
	94	Valdecanas	ES	12	< RL	< RL	< RL	< RL	< RL	< RL	1
	95	Embalse de Torrejon	ES	17	< RL	< RL	< RL	< RL	< RL	< RL	
	96	Vila Velha de Rodao	PT								
	97	Valada Do Ribatejo	PT	10	< RL	< RL	< RL	< RL	< RL	< RL	10
Guadiana	98	Balbuena	ES	2	< RL		< RL		< RL	< RL	
	99	Puente Palmas	ES	3	< RL	< RL	< RL		< RL	< RL	;
	100	San Lucar	ES	3	< RL	< RL	< RL		< RL	< RL	;
Jucar	103	Venta De Juan Romero	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	2
	104	Embalse De Alarcon	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	2
	105	Alcala Del Jucar	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	
	106	Cofrentes Abajo	ES	12	< RL	< RL	< RL	< RL	< RL	< RL	;
Ebro	107	Garona Arriba	ES	13	< RL	< RL	< RL	< RL	< RL	< RL	
	108	Garona Abajo	ES	26	< RL	< RL	< RL	< RL	< RL	< RL	•
	109	Mendavia	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	•
	110	Zaragoza-Rio	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	7
	111	Sastago	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	
	112	Ribarroja	ES	12	< RL	< RL	< RL	< RL	< RL	< RL	8
	113	Asco Abajo	ES	26	< RL	< RL	< RL	< RL	< RL	< RL	
	114	Garcia	ES	8	< RL	< RL	< RL	< RL	< RL	< RL	
	115	Cherta	ES								
Rhone	116	Saint Alban	FR								
	117	Cruas (Aval)	FR	5	< RL	< RL	< RL	< RL	< RL	< RL	2
	118	Tricastin	FR	1	< RL				< RL	< RL	1
	119	Roquemaure (Marcoule)	FR								

RL: reporting level for 137 Cs In surface water, i.e. 1.0 BQ/L (see Appendix B)

N: Number of measurements considered in calculating the annual concentration. Monthly max: Maximum monthly average in the year.

M: Month during which the maximum occurred.

DENSE

Table S19: Time averages

YEAR

SAMPLE TYPE surface water (Bq I -1) **NUCLIDE CATEGORY**: caesium-137 (137Cs)

Catchment		Locality		N	1st quarter	2nd quarter	3rd quarter	4th quarter	Annual avg.	Monthly max	М
Mediterranean Sea	120	Garrucha	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	5
оеа	122	Cabo de San Antonio	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	8
	123	Puerto de Palma	ES	4	< RL	< RL		< RL	< RL	< RL	10
	124	Puerto de Tarragona	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	5
	126	Cabo de Creus	ES	8	< RL	< RL	< RL	< RL	< RL	< RL	3
	127	Rotondella	IT	2		< RL	< RL		< RL	< RL	5
	128	Xwejni	MT	4	< RL	< RL	< RL	< RL	< RL	< RL	5
	129	Lapsi	MT	4	< RL	< RL	< RL	< RL	< RL	< RL	10
	130	Wied Ghammieq	MT	4	< RL	< RL	< RL	< RL	< RL	< RL	10
	131	Polis	CY	1	< RL	< RL	< RL	< RL	< RL	< RL	1
	132	Paphos	CY								
	133	Limassol	CY	2	< RL	< RL	< RL	< RL	< RL	< RL	1
	134	Larnaca	CY	1	< RL	< RL	< RL	< RL	< RL	< RL	1
	135	Paralimni	CY	1	< RL	< RL	< RL	< RL	< RL	< RL	1
Maritsa	136	Kostenec	BG								
	137	Plovdiv	BG								
	138	Mirovo	BG								
	139	Harmanli	BG								
	140	Svilengrad	BG								
Drau	141	Schwabegg	AT	24	< RL	< RL	< RL	< RL	< RL	< RL	1
	142	Dravograd	SI	4	< RL	< RL	< RL	< RL	< RL	< RL	1
Sava	143	Krsko	SI								
Tisza	144	Tiszabecs	HU								
	145	Gergelyiugornya	HU								
	146	Zahony	HU								
	147	Tiszabercel	HU								
	148	Rakamaz	HU								
	149	Szolnok	HU	4	< RL	< RL	< RL	< RL	< RL	< RL	1
	150	Mindszent	HU								
	151	Tiszasziget II	HU								
	152	Tiszasziget I	HU	3	< RL	< RL	< RL	< RL	< RL	< RL	1

RL: reporting level for 137 Cs In surface water, i.e. 1.0 BQ/L (see Appendix B)

N: Number of measurements considered in calculating the annual concentration. Monthly max: Maximum monthly average in the year.

M: Month during which the maximum occurred.

Table S20: Time averages

YEAR 2012

SAMPLE TYPE : surface water (Bq I -1) **NUCLIDE CATEGORY**: caesium-137 (137Cs)

Catchment		Locality		N	1st quarter	2nd quarter	3rd quarter	4th quarter	Annual avg.	Monthly max	М
Danube	154	Vilshofen	DE	10	< RL	< RL	< RL	< RL	< RL	< RL	11
	155	Wolfsthal	AT	12	< RL	< RL	< RL	< RL	< RL	< RL	6
	156	Rajka	HU								
	157	Szob	HU								
	158	Budapest - North I	HU								
	159	Budapest - Danube	HU								
	160	Nagyteteny	HU								
	161	Dunaujvaros	HU	2	< RL	< RL	< RL	< RL	< RL	< RL	;
	162	Dunafoldvar II	HU	3	< RL	< RL		< RL	< RL	< RL	10
	163	Dunafoldvar I	HU								
	164	Kalocsa	HU								
	165	Gerjen	HU	2	< RL	< RL	< RL	< RL	< RL	< RL	
	166	Ваја	HU	3	< RL	< RL	< RL	< RL	< RL	< RL	
	167	Mohacs	HU	2	< RL	< RL	< RL	< RL	< RL	< RL	
	168	Drobeta Turnu Severin	RO								
	169	Novo Selo	BG								
	170	Ruse	BG								
	172	Bechet	RO								
	173	Oriahovo	BG								
	174	Baykal	BG								
	175	Nikopol	BG								
	176	Belene	BG								
	177	Zimnicea	RO								
	178	Svishtov	BG								
	179	Ruse	BG								
	180	Silistra	BG								
	181	Calarasi	RO								
	182	Cernavoda*	RO	10	< RL	< RL	< RL	< RL	< RL	< RL	;
	183	Tulcea	RO								
	184	Sfantu Gheorge Tulcea	RO	10	< RL	< RL	< RL	< RL	< RL	< RL	10
Clyde	185	Clyde Estuary	UK	4	< RL	< RL	< RL	< RL	< RL	< RL	
Lough Neagh	186	Lough Neagh	UK	1	< RL				< RL	< RL	
Faughan	187	Faughan	UK								
Sava	188	Zagreb	HR	2		< RL		< RL	< RL	< RL	10

RL: reporting level for 137 Cs In surface water, i.e. 1.0 BQ/L (see Appendix B) *: sampling location downstream of a nuclear power plant

N: Number of measurements considered in calculating the annual concentration. Monthly max: Maximum monthly average in the year. M: Month during which the maximum occurred.

VEAD

Table S21:

Time averages

YEAR

:

SAMPLE TYPE
NUCLIDE CATEGORY

surface water (Bq I ⁻¹) caesium-137 (¹³⁷Cs)

2013

Catchment Locality N 1st 2nd 3rd 4th Annual Monthly М quarter quarter quarter quarter avg. max Indalsaelven < RL < RL < RL < RL 1 Oestersund-Storsjoen SE 2 9 **Gulf Of Bothnia** < RL < RL 2 Forsmark (F135) SE 1 < RL 10 3 Bottenhavet (C14) < RL < RL < RL SE 1 10 4 SE 1 < RL < RL < RL 10 Bottenviken (A5) 2 < RL < RL < RL Kemijoki < RL 5 Kemi FI 5 Oulujoki 6 Oulu FI 2 < RL < RL < RL < RL 5 2 Kymijoki 7 Kotka FI < RL < RL < RL < RL 10 4 < RL Narva < RL < RL < RL < RL 8 Narva EE 4 **Gulf Of Finland Gulf Of Finland, N8** EE < RL < RL < RL 9 1 9 Gulf Of Finland, EE17 1 10 EE < RL < RL < RL 9 11 Gulf Of Finland, PE EE 1 < RL < RL < RL 9 12 **Gulf Of Finland, PW** < RL 9 EE 1 < RL < RL LV 13 Daugavpils Daugava 14 Riga LV Neman Above Druskininkai LT < RL < RL < RL < RL < RL 15 4 < RL 2 4 < RL < RL < RL 16 LT < RL < RL < RL 10 Skirvyte 2 Vistula Krakow Tyniec PL < RI < RI < RL < RL 17 5 18 Annopol PL 2 < RL < RL < RL < RL 8 2 19 Plock PL < RL < RL < RL < RL 6 2 Kiezmark < RI < RI < RL 20 PL < RI 6 Oder 21 Bohumin CZ 4 < RL < RL < RL < RL < RL < RL 8 22 Chalupki PL 2 < RL < RL < RL < RL 8 Wroclaw 23 PL 25 Krajnik PL 2 < RL < RL < RL < RL 5 Baltic Sea 26 Oskarshamn (S36) SE < RL < RL < RL 11 1 27 Baltic Sea P-140 PL 28 Baltic Sea P-1 Baltic Sea P-116 29 PL 30 Baltic Sea P-110 PL 31 Baltic Sea P-5 2 < RL < RL < RL < RL 8 32 Baltic Sea P-39 PL < RL < RL 33 Moen DK 2 < RL < RL 5 34 Gedser Odde 2 < RL < RL < RL < RL 6 DE 35 Luebeck Bay 36 Femern Baelt DK 2 < RL < RL < RL < RL 6 37 Langeland Baelt DK 2 < RL < RL < RL < RL 6 The Great Belt Halskov Rev DK 2 < RL < RL < RL < RL 38 6 2 < RL 39 Asnaes Rev DK < RL < RL < RL 6 The Sound 40 The Sound S DK 2 < RL < RL < RL < RL 6 2 < RL < RL 6 41 DK < RL < RL The Sound N(A)

RL: reporting level for $^{\rm 137}{\rm Cs}$ In surface water, i.e. 1.0 BQ/L (see Appendix B)

N: Number of measurements considered in calculating the annual concentration.

Monthly max: Maximum monthly average in the year.

M: Month during which the maximum occurred.

Table S22: Time averages

YEAR : 2013

SAMPLE TYPE : surface water (Bq I ⁻¹) NUCLIDE CATEGORY : caesium-137 (¹³⁷Cs)

Catchment		Locality		N	1st quarter	2nd quarter	3rd quarter	4th quarter	Annual avg.	Monthly max	M
Kattegat	42	Kattegat-413	DK	2		< RL		< RL	< RL	< RL	6
	45	Ringhals (35)	SE	2		< RL	< RL		< RL	< RL	9
Skagerrak	46	Fjaellbacka	SE	2		< RL	< RL		< RL	< RL	5
Elbe	47	Hrensko	CZ	4	< RL	< RL	< RL	< RL	< RL	< RL	2
	48	Wedel	DE	12	< RL	< RL	< RL	< RL	< RL	< RL	3
	49	Cuxhaven	DE	11	< RL	< RL	< RL	< RL	< RL	< RL	2
Rhine	50	Lauterbourg	FR								
	51	Worms	DE	12	< RL	< RL	< RL	< RL	< RL	< RL	6
	52	Trebur	DE	15	< RL	< RL	< RL	< RL	< RL	< RL	5
	53	Koblenz	DE	21	< RL	< RL	< RL	< RL	< RL	< RL	11
	54	Lobith	NL								
Moselle	55	Wincheringen	DE	12	< RL	< RL	< RL	< RL	< RL	< RL	10
Meuse	56	Chooz (Givet)	FR								
	57	Heer-Agimont	BE	4		< RL	< RL	< RL	< RL	< RL	9
	58	Andenne	BE	27	< RL	< RL	< RL	< RL	< RL	< RL	4
	59	Huy	BE	26	< RL	< RL	< RL	< RL	< RL	< RL	4
	60	Lixhe	BE	27	< RL	< RL	< RL	< RL	< RL	< RL	3
	61	Eijsden	NL								
North Sea	63	Terschelling, 100 km from coast	NL								
	64	Noordwijk, 70 km from coast	NL								
	65	Noordwijk, 10 km from coast	NL								
Seine	66	Le Vesinet	FR								
Channel	67	Wimereux	FR								
	68	Jobourg	FR								
	69	La Hague-Jardeheu	FR								
Loire	70	Dampierre en Burly	FR								
	71	Angers (EDF)	FR								
Garonne	72	Bordeaux	FR								
Atlantic Ocean	73	Pornichet	FR								
	74	Arcachon	FR								
	75	St Pierre D'Oleron	FR								
	78	Cabo Silleiro	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	2
	79	Isla Christina	ES	4	< RL		< RL	< RL	< RL	< RL	7
	80	Puerto de Cadiz	ES	4	< RL		< RL	< RL	< RL	< RL	7
	81	Estrecho de Gibraltar	ES	4	< RL		< RL	< RL	< RL	< RL	12
	82	Puerto De Las Palmas	ES	4	< RL		< RL	< RL	< RL	< RL	2

RL: reporting level for $^{\rm 137}{\rm Cs}$ In surface water, i.e. 1.0 BQ/L (see Appendix B)

N: Number of measurements considered in calculating the annual concentration. Monthly max: Maximum monthly average in the year.

M: Month during which the maximum occurred.

YEAR

Time averages

Table S23:

SAMPLE TYPE

surface water (Bq I -1)

NUCLIDE CATEGORY:

caesium-137 (137Cs)

Catchment		Locality		N	1st quarter	2nd quarter	3rd quarter	4th quarter	Annual avg.	Monthly max	М
Mino	83	Lugo	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	4
	84	Orense	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	7
	85	Caldelas De Tuy	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	7
Duero	86	Garray	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	4
	87	Quintanilla	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	4
	88	Villalcampo	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	10
Tagus	89	Trillo Arriba	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	3
	90	Zorita Arriba	ES	12	< RL	< RL	< RL	< RL	< RL	< RL	11
	91	Aranjuez	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	g
	92	Toledo	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	3
	93	Talavera	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	3
	94	Valdecanas	ES	12	< RL	< RL	< RL	< RL	< RL	< RL	10
	95	Embalse de Torrejon	ES	16	< RL	< RL	< RL	< RL	< RL	< RL	5
	96	Vila Velha de Rodao	PT								
	97	Valada Do Ribatejo	PT	10	< RL	< RL	< RL	< RL	< RL	< RL	11
Guadiana	98	Balbuena	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	12
	99	Puente Palmas	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	6
	100	San Lucar	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	6
Jucar	103	Venta De Juan Romero	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	2
	104	Embalse De Alarcon	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	5
	105	Alcala Del Jucar	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	5
	106	Cofrentes Abajo	ES	12	< RL	< RL	< RL	< RL	< RL	< RL	5
Ebro	107	Garona Arriba	ES	13	< RL	< RL	< RL	< RL	< RL	< RL	8
	108	Garona Abajo	ES	26	< RL	< RL	< RL	< RL	< RL	< RL	7
	109	Mendavia	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	7
	110	Zaragoza-Rio	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	5
	111	Sastago	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	7
	112	Ribarroja	ES	11	< RL	< RL	< RL	< RL	< RL	< RL	11
	113	Asco Abajo	ES	26	< RL	< RL	< RL	< RL	< RL	< RL	11
	114	Garcia	ES	8	< RL	< RL	< RL	< RL	< RL	< RL	8
	115	Cherta	ES								
Rhone	116	Saint Alban	FR								
	117	Cruas (Aval)	FR	4	< RL	< RL	< RL		< RL	< RL	3
	118	Tricastin	FR								
	119	Roquemaure (Marcoule)	FR								

RL: reporting level for 137 Cs In surface water, i.e. 1.0 BQ/L (see Appendix B)

N: Number of measurements considered in calculating the annual concentration. Monthly max: Maximum monthly average in the year.

M: Month during which the maximum occurred.

Table S24: Time averages

YEAR : 2013

SAMPLE TYPE : surface water (Bq I ⁻¹) NUCLIDE CATEGORY : caesium-137 (¹³⁷Cs)

Catchment		Locality		N	1st quarter	2nd quarter	3rd quarter	4th quarter	Annual avg.	Monthly max	М
Mediterranean	120	Garrucha	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	8
Sea	122	Cabo de San Antonio	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	8
	123	Puerto de Palma	ES	3	< RL		< RL		< RL	< RL	g
	124	Puerto de Tarragona	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	2
	126	Cabo de Creus	ES	8	< RL		< RL	< RL	< RL	< RL	8
	127	Rotondella	IT	2		< RL		< RL	< RL	< RL	6
	128	Xwejni	МТ	4	< RL	< RL	< RL	< RL	< RL	< RL	7
	129	Lapsi	МТ	4	< RL	< RL	< RL	< RL	< RL	< RL	g
	130	Wied Ghammieq	МТ	4	< RL	< RL	< RL	1.7E+00	< RL	1.7E+00	12
	131	Polis	CY	1			< RL		< RL	< RL	7
	132	Paphos	CY	1		< RL			< RL	< RL	5
	133	Limassol	CY	2		< RL			< RL	< RL	4
	134	Larnaca	CY	2		< RL	< RL		< RL	< RL	5
	135	Paralimni	CY	2		< RL			< RL	< RL	5
Maritsa	136	Kostenec	BG								
	137	Plovdiv	BG								
	138	Mirovo	BG								
	139	Harmanli	BG								
	140	Svilengrad	BG								
Drau	141	Schwabegg	AT	24	< RL	< RL	< RL	< RL	< RL	< RL	1
	142	Dravograd	SI	4	< RL	< RL	< RL	< RL	< RL	< RL	1
Sava	143	Krsko	SI	4	< RL	< RL	< RL	< RL	< RL	< RL	2
Tisza	144	Tiszabecs	HU								
	145	Gergelyiugornya	HU								
	146	Zahony	HU								
	147	Tiszabercel	HU								
	148	Rakamaz	HU								
	149	Szolnok	HU	5	< RL	< RL	< RL	< RL	< RL	< RL	2
	150	Mindszent	HU								
	151	Tiszasziget II	HU	1	< RL				< RL	< RL	1
	152	Tiszasziget I	HU	6	< RL	< RL	< RL	< RL	< RL	< RL	1

RL: reporting level for ^{137}Cs In surface water, i.e. 1.0 BQ/L (see Appendix B)

N: Number of measurements considered in calculating the annual concentration. Monthly max: Maximum monthly average in the year.

M: Month during which the maximum occurred.

DENSE

Table S25: Time averages

YEAR 2013

SAMPLE TYPE surface water (Bq I -1) **NUCLIDE CATEGORY**: caesium-137 (137Cs)

Catchment		Locality		N	1st quarter	2nd quarter	3rd quarter	4th quarter	Annual avg.	Monthly max	М
Danube	154	Vilshofen	DE	12	< RL	< RL	< RL	< RL	< RL	< RL	
	155	Wolfsthal	AT	12	< RL	< RL	< RL	< RL	< RL	< RL	(
	156	Rajka	HU								
	157	Szob	HU								
	158	Budapest - North I	HU								
	159	Budapest - Danube	HU								
	160	Nagyteteny	HU								
	161	Dunaujvaros	HU	2	< RL	< RL	< RL	< RL	< RL	< RL	
	162	Dunafoldvar II	HU	4	< RL	< RL	< RL	< RL	< RL	< RL	
	163	Dunafoldvar I	HU	4	< RL	< RL	< RL	< RL	< RL	< RL	
	164	Kalocsa	HU	4	< RL	< RL	< RL	< RL	< RL	< RL	
	165	Gerjen	HU	10	< RL	< RL	< RL	< RL	< RL	< RL	
	166	Ваја	HU	3	< RL	< RL	< RL	< RL	< RL	< RL	
	167	Mohacs	HU	2	< RL	< RL	< RL	< RL	< RL	< RL	
	168	Drobeta Turnu Severin	RO	12	< RL	< RL	< RL	< RL	< RL	< RL	1
	169	Novo Selo	BG								
	170	Ruse	BG								
	172	Bechet	RO	12	< RL	< RL	< RL	< RL	< RL	< RL	
	173	Oriahovo	BG								
	174	Baykal	BG								
	175	Nikopol	BG								
	176	Belene	BG								
	177	Zimnicea	RO	12	< RL	< RL	< RL	< RL	< RL	< RL	1
	178	Svishtov	BG								
	179	Ruse	BG								
	180	Silistra	BG								
	181	Calarasi	RO								
	182	Cernavoda*	RO	24	< RL	< RL	< RL	< RL	< RL	< RL	
	183	Tulcea	RO	12	< RL	< RL	< RL	< RL	< RL	< RL	
	184	Sfantu Gheorge Tulcea	RO	12	< RL	< RL	< RL	< RL	< RL	< RL	
Clyde	185	Clyde Estuary	UK	4	< RL	< RL	< RL	< RL	< RL	< RL	
Lough Neagh	186	Lough Neagh	UK	\vdash							
Faughan	187	Faughan	UK	\vdash							
Sava	188	Zagreb	HR	2		< RL		< RL	< RL	< RL	

RL: reporting level for 137 Cs In surface water, i.e. 1.0 BQ/L (see Appendix B) *: sampling location downstream of a nuclear power plant

N: Number of measurements considered in calculating the annual concentration. Monthly max: Maximum monthly average in the year.

Table S26: Time averages

YEAR 2014

SAMPLE TYPE surface water (Bq I -1) **NUCLIDE CATEGORY**: caesium-137 (137Cs)

Catchment		Locality		N	1st quarter	2nd quarter	3rd quarter	4th quarter	Annual avg.	Monthly max	M
Indalsaelven	1	Oestersund-Storsjoen	SE	2		< RL		< RL	< RL	< RL	10
Gulf Of Bothnia	2	Forsmark (F135)	SE	1			< RL		< RL	< RL	9
	3	Bottenhavet (C14)	SE	1			< RL		< RL	< RL	9
	4	Bottenviken (A5)	SE	1			< RL		< RL	< RL	9
Kemijoki	5	Kemi	FI	2		< RL		< RL	< RL	< RL	5
Oulujoki	6	Oulu	FI	2		< RL		< RL	< RL	< RL	5
Kymijoki	7	Kotka	FI	2		< RL		< RL	< RL	< RL	5
Narva	8	Narva	EE	4		< RL	< RL	< RL	< RL	< RL	4
Gulf Of Finland	9	Gulf Of Finland, N8	EE	1			< RL		< RL	< RL	8
	10	Gulf Of Finland, EE17	EE	1			< RL		< RL	< RL	8
	11	Gulf Of Finland, PE	EE	1			< RL		< RL	< RL	8
	12	Gulf Of Finland, PW	EE	1			< RL		< RL	< RL	8
Daugava	13	Daugavpils	LV								
	14	Riga	LV								
Neman	15	Above Druskininkai	LT	4	< RL	< RL	< RL	< RL	< RL	< RL	7
	16	Skirvyte	LT	4	< RL	< RL	< RL	< RL	< RL	< RL	10
Vistula	17	Krakow Tyniec	PL	2		< RL	< RL		< RL	< RL	5
	18	Annopol	PL	2		< RL		< RL	< RL	< RL	10
	19	Plock	PL	2		< RL	< RL		< RL	< RL	4
	20	Kiezmark	PL	2		< RL	< RL		< RL	< RL	8
Oder	21	Bohumin	CZ								
	22	Chalupki	PL	2		< RL		< RL	< RL	< RL	5
	23	Wroclaw	PL								
	25	Krajnik	PL	2		< RL		< RL	< RL	< RL	5
Baltic Sea	26	Oskarshamn (S36)	SE	1				< RL	< RL	< RL	10
	27	Baltic Sea P-140	PL								
	28	Baltic Sea P-1	PL								
	29	Baltic Sea P-116	PL								
	30	Baltic Sea P-110	PL								
	31	Baltic Sea P-5	PL	2		< RL		< RL	< RL	< RL	10
	32	Baltic Sea P-39	PL								
	33	Moen	DK	1		< RL			< RL	< RL	6
	34	Gedser Odde	DK	1		< RL			< RL	< RL	6
	35	Luebeck Bay	DE								
	36	Femern Baelt	DK	1		< RL			< RL	< RL	6
	37	Langeland Baelt	DK	1		< RL			< RL	< RL	6
The Great Belt	38	Halskov Rev	DK	1		< RL			< RL	< RL	6
	39	Asnaes Rev	DK	1		< RL			< RL	< RL	6
The Sound	40	The Sound S	DK	1		< RL			< RL	< RL	6
	41	The Sound N(A)	DK	1		< RL			< RL	< RL	6

RL: reporting level for ^{137}Cs In surface water, i.e. 1.0 BQ/L (see Appendix B)

N: Number of measurements considered in calculating the annual concentration. Monthly max: Maximum monthly average in the year.

M: Month during which the maximum occurred.

Table S27: Time averages

YEAR

SAMPLE TYPE surface water (Bq I -1) **NUCLIDE CATEGORY**: caesium-137 (137Cs)

Catchment		Locality		N	1st quarter	2nd quarter	3rd quarter	4th quarter	Annual avg.	Monthly max	М
Kattegat	42	Kattegat-413	DK	1		< RL			< RL	< RL	ϵ
	45	Ringhals (35)	SE	2		< RL	< RL		< RL	< RL	5
Skagerrak	46	Fjaellbacka	SE	2		< RL	< RL		< RL	< RL	9
Elbe	47	Hrensko	CZ								
	48	Wedel	DE	12	< RL	< RL	< RL	< RL	< RL	< RL	12
	49	Cuxhaven	DE	3	< RL				< RL	< RL	3
Rhine	50	Lauterbourg F									
	51	Worms	DE	13	< RL	< RL	< RL	< RL	< RL	< RL	7
	52	Trebur	DE	17	< RL	< RL	< RL	< RL	< RL	< RL	1
	53	Koblenz	DE	26	< RL	< RL	< RL	< RL	< RL	< RL	3
	54	Lobith	NL								
Moselle	55	Wincheringen	DE	12	< RL	< RL	< RL	< RL	< RL	< RL	6
Meuse	56	Chooz (Givet)	FR								
	57	Heer-Agimont	BE	4		< RL	< RL	< RL	< RL	< RL	
	58	Andenne	BE	26	< RL	< RL	< RL	< RL	< RL	< RL	10
	59	Huy	BE	26	< RL	< RL	< RL	< RL	< RL	< RL	7
	60	Lixhe	BE	26	< RL	< RL	< RL	< RL	< RL	< RL	12
	61	Eijsden	NL								
North Sea	63	Terschelling, 100 km from	NL								
	64	coast Noordwijk, 70 km from coast	NL								
	65	Noordwijk, 10 km from coast	NL								
Seine	66	Le Vesinet	FR								
Channel	67	Wimereux	FR								
	68	Jobourg	FR								
	69	La Hague-Jardeheu	FR								
Loire	70	Dampierre en Burly	FR								
	71	Angers (EDF)	FR								
Garonne	72	Bordeaux	FR								
Atlantic Ocean	73	Pornichet	FR								
	74	Arcachon	FR								
	75	St Pierre D'Oleron	FR								
	78	Cabo Silleiro	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	
	79	Isla Christina	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	9
	80	Puerto de Cadiz	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	9
	81	Estrecho de Gibraltar	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	g
	82	Puerto De Las Palmas	ES	4	< RL	< RL		< RL	< RL	< RL	5

RL: reporting level for 137 Cs In surface water, i.e. 1.0 BQ/L (see Appendix B)

N: Number of measurements considered in calculating the annual concentration. Monthly max: Maximum monthly average in the year.

M: Month during which the maximum occurred.

Table S28: Time averages

YEAR : 2014

SAMPLE TYPE : surface water (Bq I ⁻¹) NUCLIDE CATEGORY : caesium-137 (¹³⁷Cs)

Catchment		Locality		N	1st quarter	2nd quarter	3rd quarter	4th quarter	Annual avg.	Monthly max	M
Mino	83	Lugo	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	10
	84	Orense	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	7
	85	Caldelas De Tuy	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	1
Duero	86	Garray	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	7
	87	Quintanilla	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	1
	88	Villalcampo	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	7
Tagus	89	Trillo Arriba	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	6
	90	Zorita Arriba	ES	12	< RL	< RL	< RL	< RL	< RL	< RL	8
	91	Aranjuez	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	g
	92	Toledo	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	9
	93	Talavera	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	g
	94	Valdecanas	ES	12	< RL	< RL	< RL	< RL	< RL	< RL	2
	95	Embalse de Torrejon	ES	16	< RL	< RL	< RL	< RL	< RL	< RL	5
	96	Vila Velha de Rodao	PT								
	97	Valada Do Ribatejo	PT	12	< RL	< RL	< RL	< RL	< RL	< RL	7
Guadiana	98	Balbuena	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	12
	99	Puente Palmas	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	g
	100	San Lucar	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	g
Jucar	103	Venta De Juan Romero	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	8
	104	Embalse De Alarcon	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	
	105	Alcala Del Jucar	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	8
	106	Cofrentes Abajo	ES	12	< RL	< RL	< RL	< RL	< RL	< RL	8
Ebro	107	Garona Arriba	ES	14	< RL	< RL	< RL	< RL	< RL	< RL	8
	108	Garona Abajo	ES	27	< RL	< RL	< RL	< RL	< RL	< RL	5
	109	Mendavia	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	7
	110	Zaragoza-Rio	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	1
	111	Sastago	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	1
	112	Ribarroja	ES	12	< RL	< RL	< RL	< RL	< RL	< RL	8
	113	Asco Abajo	ES	25	< RL	< RL	< RL	< RL	< RL	< RL	7
	114	Garcia	ES	8	< RL	< RL	< RL	< RL	< RL	< RL	11
	115	Cherta	ES								
Rhone	116	Saint Alban	FR								
	117	Cruas (Aval)	FR								
	118	Tricastin	FR								
	119	Roquemaure (Marcoule)	FR								

RL: reporting level for 137 Cs In surface water, i.e. 1.0 BQ/L (see Appendix B)

N: Number of measurements considered in calculating the annual concentration. Monthly max: Maximum monthly average in the year.

M: Month during which the maximum occurred.

DENSE

Table S29: Time averages

YEAR 2014

SAMPLE TYPE surface water (Bq I -1) **NUCLIDE CATEGORY** caesium-137 (137Cs)

Catchment		Locality		N	1st quarter	2nd quarter	3rd quarter	4th quarter	Annual avg.	Monthly max	М
Mediterranean Sea	120	Garrucha	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	9
dea	122	Cabo de San Antonio	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	9
	123	Puerto de Palma	ES	5	< RL	< RL	< RL	< RL	< RL	< RL	9
	124	Puerto de Tarragona	ES	4	< RL	< RL	< RL	< RL	< RL	< RL	9
	126	Cabo de Creus	ES	8	< RL	< RL	< RL	< RL	< RL	< RL	9
	127	Rotondella	IT	1				< RL	< RL	< RL	10
	128	Xwejni	MT	4	< RL	< RL	< RL	< RL	< RL	< RL	4
	129	Lapsi	MT	4	< RL	< RL	< RL	< RL	< RL	< RL	5
	130	Wied Ghammieq	МТ	4	< RL	< RL	< RL	< RL	< RL	< RL	12
	131	Polis	CY	1			< RL		< RL	< RL	7
	132	Paphos	CY								
	133	Limassol	CY								
	134	Larnaca	CY								
	135	Paralimni	CY	1		< RL			< RL	< RL	6
Maritsa	136	Kostenec	BG								
	137	Plovdiv	BG								
	138	Mirovo	BG								
	139	Harmanli	BG								
	140	Svilengrad	BG								
Drau	141	Schwabegg	AT	24	< RL	< RL	< RL	< RL	< RL	< RL	1
	142	Dravograd	SI	4	< RL		< RL	< RL	< RL	< RL	9
Sava	143	Krsko	SI	4	< RL	< RL		< RL	< RL	< RL	3
Tisza	144	Tiszabecs	HU								
	145	Gergelyiugornya	HU								
	146	Zahony	HU								
	147	Tiszabercel	HU								
	148	Rakamaz	HU								
	149	Szolnok	HU	5	< RL	< RL	< RL	< RL	< RL	< RL	1
	150	Mindszent	HU								
	151	Tiszasziget II	HU								
	152	Tiszasziget I	HU	5	< RL	< RL	< RL	< RL	< RL	< RL	1

RL: reporting level for 137 Cs In surface water, i.e. 1.0 BQ/L (see Appendix B)

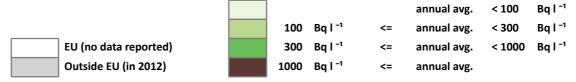
N: Number of measurements considered in calculating the annual concentration. Monthly max: Maximum monthly average in the year.

M: Month during which the maximum occurred.

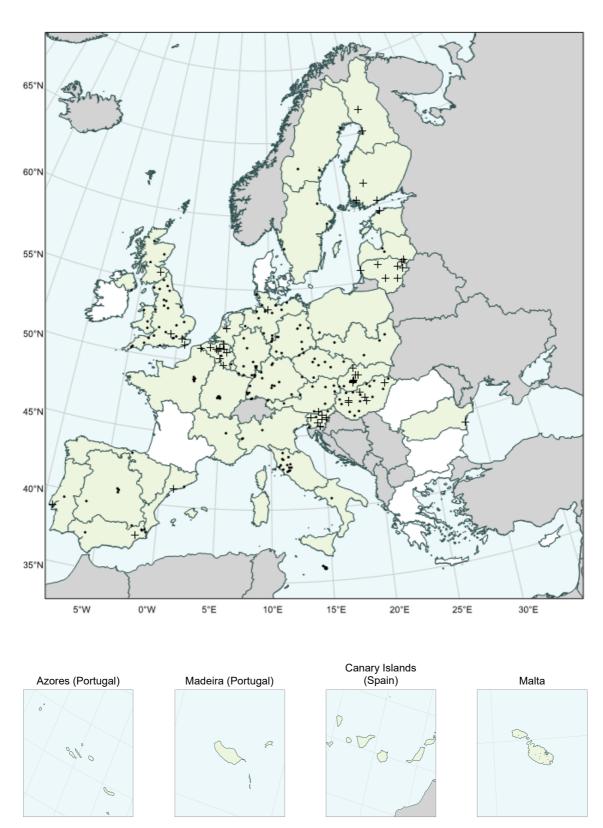
Table S30: Time averages

YEAR 2014

SAMPLE TYPE surface water (Bq I -1) **NUCLIDE CATEGORY**: caesium-137 (137Cs)



Catchment		Locality		N	1st quarter	2nd quarter	3rd quarter	4th quarter	Annual avg.	Monthly max	М
Danube	154	Vilshofen	DE	12	< RL	< RL	< RL	< RL	< RL	< RL	11
	155	Wolfsthal	AT	12	< RL	< RL	< RL	< RL	< RL	< RL	8
	156	Rajka	HU								
	157	Szob	HU								
	158	Budapest - North I	HU								
	159	Budapest - Danube	HU								
	160	Nagyteteny	HU								
	161	Dunaujvaros	HU	2	< RL	< RL	< RL	< RL	< RL	< RL	
	162	Dunafoldvar II	HU	3	< RL		< RL	< RL	< RL	< RL	
	163	Dunafoldvar I	HU	4	< RL	< RL	< RL	< RL	< RL	< RL	
	164	Kalocsa	HU	4	< RL	< RL	< RL	< RL	< RL	< RL	
	165	Gerjen	HU	9	< RL	< RL	< RL	< RL	< RL	< RL	
	166	Ваја	HU	2	< RL	< RL	< RL	< RL	< RL	< RL	
	167	Mohacs	HU	2	< RL	< RL	< RL	< RL	< RL	< RL	
	168	Drobeta Turnu Severin	RO	12	< RL	< RL	< RL	< RL	< RL	< RL	
	169	Novo Selo	BG								
	170	Ruse	BG								
	172	Bechet	RO	12	< RL	< RL	< RL	< RL	< RL	< RL	
	173	Oriahovo	BG								
	174	Baykal	BG								
	175	Nikopol	BG								
	176	Belene	BG								
	177	Zimnicea	RO	12	< RL	< RL	< RL	< RL	< RL	< RL	
	178	Svishtov	BG								
	179	Ruse	BG								
	180	Silistra	BG								
	181	Calarasi	RO	12	< RL	< RL	< RL	< RL	< RL	< RL	
	182	Cernavoda*	RO	24	< RL	< RL	< RL	< RL	< RL	< RL	
	183	Tulcea	RO	12	< RL	< RL	< RL	< RL	< RL	< RL	
	184	Sfantu Gheorge Tulcea	RO	12	< RL	< RL	< RL	< RL	< RL	< RL	
Clyde	185	Clyde Estuary	UK	4	< RL	< RL	< RL	< RL	< RL	< RL	
Lough Neagh	186	Lough Neagh	UK								
Faughan	187	Faughan	UK								
Sava	188	Zagreb	HR	4		< RL	< RL	< RL	< RL	< RL	


RL: reporting level for 137 Cs In surface water, i.e. 1.0 BQ/L (see Appendix B) *: sampling location downstream of a nuclear power plant

N: Number of measurements considered in calculating the annual concentration. Monthly max: Maximum monthly average in the year. M: Month during which the maximum occurred.

- sample location (Coordinate Accuracy = Precise or Not Specified)
- + regional average (Coordinate Accuracy = Reference Point of Region)

Fig.W1Sampling locations and geographical averages by year for ³H in drinking water, 2012

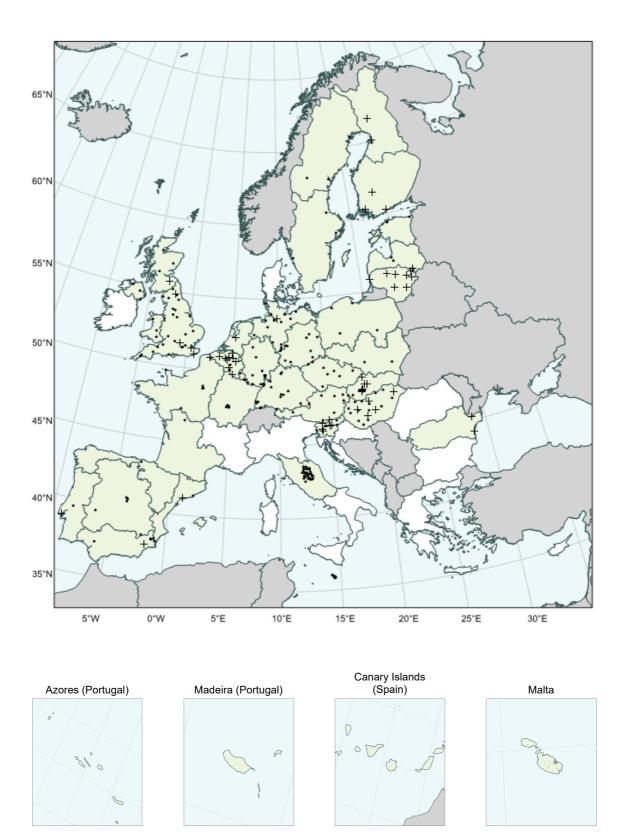
Table W1: Geographical and time averages

YEAR : 2012

SAMPLE TYPE : drinking water (Bq I ⁻¹)

NUCLIDE CATEGORY : tritium (3H)

Country	N	N L 1st 2nd 3rd		4th	Annual	Monthly	М		
	''	_	quarter	quarter	quarter	quarter	average	max	
AT	109	9	< RL	< RL	1				
BE	49	13	< RL	< RL	7				
BG									
CY									
CZ	64	9	< RL	< RL	11				
DE-N	44	15	< RL	< RL	1				
DE-C	27	11	< RL	< RL	6				
DE-S	70	19	< RL	< RL	11				
DE-E	31	10	< RL	< RL	7				
DE	172	55	< RL	< RL	6				
DK									
EE	4	2	< RL			< RL	< RL	< RL	2
ES-N	12	1	< RL	< RL	10				
ES-C	40	6	< RL	< RL	10				
ES-S	38	6	< RL	< RL	6				
ES-E	44	3	< RL	< RL	6				
ES	134	16	< RL	< RL	6				
FI-N	4	2		< RL		< RL	< RL	< RL	10
FI-S	6	3		< RL		< RL	< RL	< RL	10
FI	10	5		< RL		< RL	< RL	< RL	10
FR-NW	10	5	< RL		< RL		< RL	< RL	3
FR-NE	16	8		< RL	< RL		< RL	< RL	9
FR-SW									
FR-SE	1	1				< RL	< RL	< RL	10
FR	27	14	< RL	< RL	5				
GB-EN	123	26	< RL	< RL	10				
GB-WL	18	4	< RL	< RL	1				
GB-SC	24	4	< RL	< RL	9				
GB-NI	5	1	< RL	< RL	1				
GB	170	35	< RL	< RL	7				
GR									
HU	51	22	< RL	< RL	5				
IE									
IT-N	15	3	< RL	< RL	5				
IT-C	37	15		< RL	< RL	< RL	< RL	< RL	11
IT-S	1	1		< RL			< RL	< RL	5
IT	53	19	< RL	< RL	11				
LT	72	7	< RL	< RL	7				
LU	3	1	< RL		< RL		< RL	< RL	1
LV	12	4	. 5'	< RL	< RL	< RL	< RL	< RL	5
MT	13	12	< RL	< RL	1				
NL DL N	24	1	< RL	< RL	1				
PL-N	1	1	< RL	< RL	1				
PL-S	4	4	< RL	< RL	1				
PL	5	5	< RL	< RL	1				
PT	23	2	< RL	< RL	11				
RO-N		,	. 51	. 5.			. 5.	. 5.	_
RO-S	16	1	< RL	< RL	9				
RO	16	1	< RL	< RL	9				
SE-N	6	3		< RL	< RL	< RL	< RL	< RL	10
SE-S	6	3		< RL		< RL	< RL	< RL	10
SE	12	6	. 5'	< RL	< RL	< RL	< RL	< RL	10
SI	14	11	< RL	< RL	7				
SK	82	9	< RL	< RL	4				


RL: reporting level for 3H In drinking water, i.e. 1.0 E+02 BQ/L (see Appendix B)

N: Number of measurements considered in calculating the annual concentration. L: Number of sampling locations considered in calculating the annual concentration. Monthly max: Maximum monthly average in the year.

- sample location (Coordinate Accuracy = Precise or Not Specified)
- + regional average (Coordinate Accuracy = Reference Point of Region)

Fig.W2Sampling locations and geographical averages by year for ³H in drinking water, 2013

Table W2: Geographical and time averages

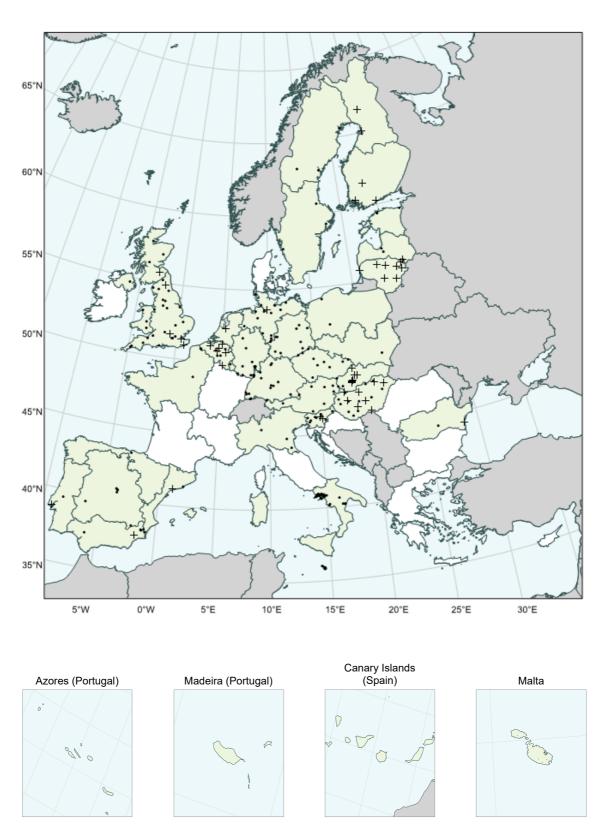
YEAR 2013

SAMPLE TYPE : drinking water (Bq I ⁻¹)

NUCLIDE CATEGORY tritium (³H)

Country	N	L	1st	2nd	3rd	4th	Annual	Monthly	М
Journary	''	-	quarter	quarter	quarter	quarter	average	max	
AT	109	9	< RL	< RL	< RL	< RL	< RL	< RL	11
BE	47	12	< RL	< RL	< RL	< RL	< RL	< RL	9
BG									
CY									
CZ	60	8	< RL	< RL	< RL	< RL	< RL	< RL	9
DE-N	51	15	< RL	< RL	< RL	< RL	< RL	< RL	1
DE-C	45	13	< RL	< RL	< RL	< RL	< RL	< RL	6
DE-S	69	18	< RL	< RL	< RL	< RL	< RL	< RL	1
DE-E	28	10	< RL	< RL	< RL	< RL	< RL	< RL	12
DE	193	56	< RL	< RL	< RL	< RL	< RL	< RL	1
DK									
EE	5	3	< RL	< RL		< RL	< RL	< RL	2
ES-N	12	1	< RL	< RL	< RL	< RL	< RL	< RL	3
ES-C	40	6	< RL	< RL	< RL	< RL	< RL	< RL	2
ES-S	40	6	< RL	< RL	< RL	< RL	< RL	< RL	9
ES-E	40	3	< RL	< RL	< RL	< RL	< RL	< RL	7
ES	132	16	< RL	< RL	< RL	< RL	< RL	< RL	9
FI-N	4	2		< RL	İ	< RL	< RL	< RL	4
FI-S	6	3		< RL		< RL	< RL	< RL	10
FI	10	5		< RL		< RL	< RL	< RL	10
FR-NW	11	6	< RL	< RL	< RL	< RL	< RL	< RL	9
FR-NE	9	9			< RL	< RL	< RL	< RL	10
FR-SW	1	1		< RL			< RL	< RL	4
FR-SE									
FR	21	16	< RL	< RL	< RL	< RL	< RL	< RL	9
GB-EN	124	27	< RL	< RL	< RL	< RL	< RL	< RL	4
GB-WL	17	4	< RL	< RL	< RL	< RL	< RL	< RL	1
GB-SC	24	4	< RL	< RL	< RL	< RL	< RL	< RL	9
GB-NI	13	3	< RL	< RL	< RL	< RL	< RL	< RL	8
GB	178	38	< RL	< RL	< RL	< RL	< RL	< RL	8
GR									
HR-A									
HR-C									
HR									
HU	69	19	< RL	< RL	< RL	< RL	< RL	< RL	1
IE									
IT-N									
IT-C	37	37			< RL	< RL	< RL	< RL	10
IT-S	•	•							
IT	37	37			< RL	< RL	< RL	< RL	10
LT	73	8	< RL	< RL	< RL	< RL	< RL	< RL	3
LU	3	1	< RL		< RL		< RL	< RL	7
LV	15	4	< RL	< RL	< RL	< RL	< RL	< RL	5
MT	14	13	< RL	< RL	< RL	< RL	< RL	< RL	10
NL	12	1	< RL	< RL	< RL	< RL	< RL	< RL	1
PL-N	4	4	< RL	< RL	< RL	< RL	< RL	< RL	12
PL-S	2	2	< RL	< RL	< RL	< RL	< RL	< RL	1
PL	6	6	< RL	< RL	< RL	< RL	< RL	< RL	1
PT	22	2	< RL	< RL	< RL	< RL	< RL	< RL	7
RO-N				,,,_	,	- / _	, ,,_	7.2	•
RO-S	61	2	< RL	< RL	< RL	< RL	< RL	< RL	3
RO RO	61	2	< RL	< RL	< RL	< RL	< RL	< RL	3
SE-N	6	3	- IXL	< RL	< RL	-77.	< RL	< RL	4
SE-S	6	3		< RL	< RL	< RL	< RL	< RL	9
SE-S	12	6		< RL	< RL	< RL	< RL	< RL	
SI	12	11		< RL	< RL	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	< RL	< RL	7
			< RL	< RL	< RL	< RL	< RL < RL	< RL	
SK	85	9	< KL	\ KL	\ KL	^ KL	\ KL	\ KL	2

RL: reporting level for 3H In drinking water, i.e. 1.0 E+02 BQ/L (see Appendix B)


N: Number of measurements considered in calculating the annual concentration. L: Number of sampling locations considered in calculating the annual concentration. Monthly max: Maximum monthly average in the year.

M: Month during which the maximum occurred.

- sample location (Coordinate Accuracy = Precise or Not Specified)
- + regional average (Coordinate Accuracy = Reference Point of Region)

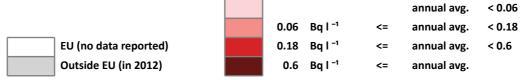
Fig.W3Sampling locations and geographical averages by year for ³H in drinking water, 2014

Table W3: Geographical and time averages

YEAR 2014

SAMPLE TYPE : drinking water (Bq I ⁻¹)

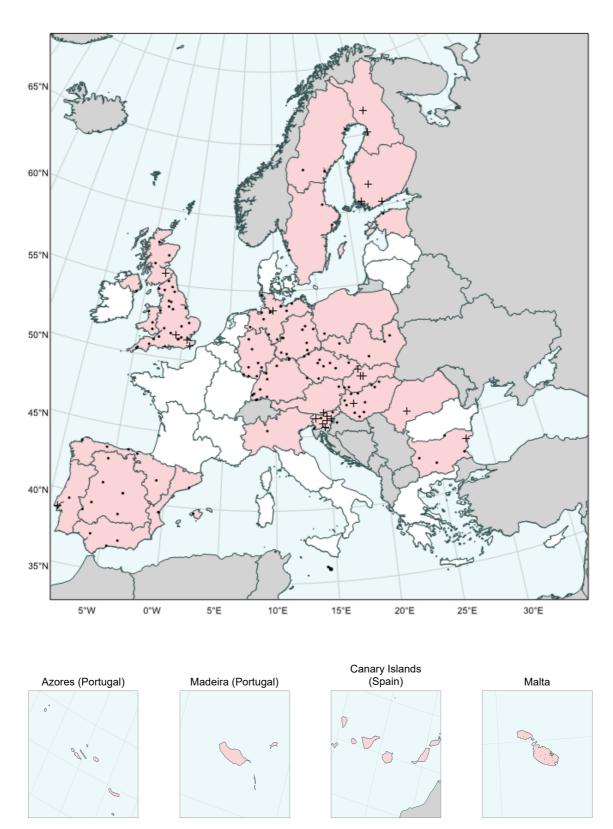
NUCLIDE CATEGORY tritium (³H)


Country	N	L	1st	2nd	3rd	4th	Annual	Monthly	М
	''	_	quarter	quarter	quarter	quarter	average	max	
AT	100	9	< RL	< RL	< RL	< RL	< RL	< RL	3
BE	48	12	< RL	< RL	< RL	< RL	< RL	< RL	5
BG									
CY									
CZ	72	11	< RL	< RL	< RL	< RL	< RL	< RL	7
DE-N	48	15	< RL	< RL	< RL	< RL	< RL	< RL	4
DE-C	22	11	< RL	< RL	< RL	< RL	< RL	< RL	12
DE-S	75	18	< RL	< RL	< RL	< RL	< RL	< RL	5
DE-E	31	10	< RL	< RL	< RL	< RL	< RL	< RL	1
DE	176	54	< RL	< RL	< RL	< RL	< RL	< RL	12
DK									
EE	6	3	< RL	< RL		< RL	< RL	< RL	2
ES-N	12	1	< RL	< RL	< RL	< RL	< RL	< RL	7
ES-C	40	6	< RL	< RL	< RL	< RL	< RL	< RL	1
ES-S	40	6	< RL	< RL	< RL	< RL	< RL	< RL	6
ES-E	39	3	< RL	< RL	< RL	< RL	< RL	< RL	8
ES	131	16	< RL	< RL	< RL	< RL	< RL	< RL	6
FI-N	4	2		< RL		< RL	< RL	< RL	10
FI-S	6	3		< RL		< RL	< RL	< RL	4
FI	10	5		< RL		< RL	< RL	< RL	10
FR-NW	6	1		< RL	< RL	< RL	< RL	< RL	10
FR-NE									
FR-SW									
FR-SE				. 54	. 54	. 54	. 54	. 54	40
FR	6	1	5,	< RL	< RL	< RL	< RL	< RL	10
GB-EN	120	25	< RL	< RL	< RL	< RL	< RL	< RL	10
GB-WL	18	4	< RL	< RL	< RL	< RL	< RL	< RL	1
GB-SC	25	4	< RL	< RL	< RL	< RL	< RL	< RL	1
GB-NI GB	1 164	1	< RL < RL	- DI	- DI	- DI	< RL < RL	< RL < RL	1 11
GR	104	34	< RL	< RL	< RL	< RL	\ RL	\ RL	11
HR-A									
HR-C									
HR HR									
HU	65	21	< RL	< RL	< RL	< RL	< RL	< RL	7
IE	- 00		177.2	17.2	-712	-712	TAL	-712	
IT-N	16	3	< RL	< RL	< RL	< RL	< RL	< RL	1
IT-C	"	١	7,12	',_		'''	',_		,
IT-S	90	44	< RL	< RL	< RL	< RL	< RL	< RL	6
IT	106	47	< RL	< RL	< RL	< RL	< RL	< RL	1
LT	80	8	< RL	< RL	< RL	< RL	< RL	< RL	2
LU	6	1	< RL	< RL	< RL	< RL	< RL	< RL	5
LV	16	4		< RL	< RL	< RL	< RL	< RL	9
МТ	7	7		< RL	< RL		< RL	< RL	4
NL	12	1	< RL	< RL	< RL	< RL	< RL	< RL	1
PL-N	2	2	< RL	< RL	< RL	< RL	< RL	< RL	1
PL-S	1	1	< RL	< RL	< RL	< RL	< RL	< RL	12
PL	3	3	< RL	< RL	< RL	< RL	< RL	< RL	1
PT	24	2	< RL	< RL	< RL	< RL	< RL	< RL	2
RO-N					1	<u> </u>		1	
RO-S	77	2	< RL	< RL	< RL	< RL	< RL	< RL	1
RO	77	2	< RL	< RL	< RL	< RL	< RL	< RL	1
SE-N	5	3	< RL	< RL	< RL	1	< RL	< RL	3
SE-S	5	3	< RL	< RL	< RL		< RL	< RL	3
SE	10	6	< RL	< RL	< RL		< RL	< RL	3
SI	14	11	< RL	< RL	< RL	< RL	< RL	< RL	6
SK	86	9	< RL	< RL	< RL	< RL	< RL	< RL	6

RL: reporting level for 3H In drinking water, i.e. 1.0 E+02 BQ/L (see Appendix B)

N: Number of measurements considered in calculating the annual concentration. L: Number of sampling locations considered in calculating the annual concentration. Monthly max: Maximum monthly average in the year.

M: Month during which the maximum occurred.



Bq I ⁻¹

Bq I ⁻¹

Bq I ⁻¹

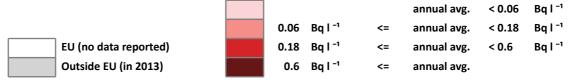
- sample location (Coordinate Accuracy = Precise or Not Specified)
- + regional average (Coordinate Accuracy = Reference Point of Region)

Fig.W4Sampling locations and geographical averages by year for ⁹⁰Sr in drinking water, 2012

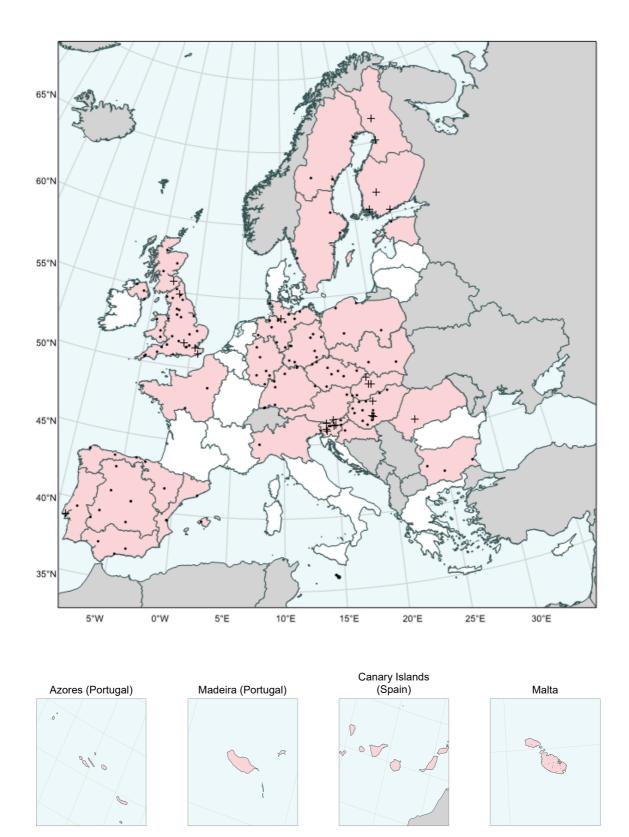
Table W4: Geographical and time averages

YEAR 2012

SAMPLE TYPE drinking water (Bq I ⁻¹) : **NUCLIDE CATEGORY** strontium-90 (90Sr)



Country	N	L	1st	2nd	3rd	4th	Annual	Monthly	М
			quarter	quarter	quarter	quarter	average	max	
AT	4	1	< RL	1					
BE							Δ		
BG	15	5	< RL	8					
CY									
CZ	29	9	< RL	1					
DE-N	27	11	< RL	7					
DE-C	18	8	< RL	7					
DE-S	19	13	< RL	11					
DE-E	22	9	< RL	2					
DE	86	41	< RL	10					
DK									
EE	2	1	< RL			< RL	< RL	< RL	2
ES-N	29	5	< RL	12					
ES-C	45	7	< RL	10					
ES-S	40	4	< RL	10					
ES-E	24	4	< RL	1					
ES	138	20	< RL	10					
FI-N	4	2		< RL		< RL	< RL	< RL	4
FI-S	6	3		< RL		< RL	< RL	< RL	4
FI	10	5		< RL		< RL	< RL	< RL	4
FR-NW									
FR-NE									
FR-SW									
FR-SE									
FR									
GB-EN	123	26	< RL	5					
GB-WL	19	4	< RL	2					
GB-SC	24	4	< RL	4					
GB-NI	5	1	< RL	2					
GB	171	35	< RL	4					
GR									
HU	26	12	< RL	12					
IE									
IT-N	4	1	< RL	9					
IT-C									
IT-S									
IT	4	1	< RL	9					
LT									
LU									
LV									
MT	13	12	< RL	1					
NL DL N			. 57	. 5/	. 57	. 5/	. 5/	. 5/	
PL-N	1	1	< RL	1					
PL-S	4	4	< RL	1					
PL	5	5	< RL	1					
PT	23	2	< RL	8					
RO-N	2	1	< RL	12					
RO-S		ار	4.00	4.04	4.54	4.51	4.04	4.04	40
RO N	2	1	< RL	12					
SE-N	6	3		< RL	10				
SE-S	6	3		< RL	. 5,	< RL	< RL	< RL	10
SE	12	6	4 D!	< RL	10				
SI	14	11	< RL	4					
SK	34	5	< RL	4					


RL: reporting level for ^{90}Sr In drinking water, i.e. 6.0 E-02 BQ/L (see Appendix B) Δ : only constraint (<) values above the reporting level were reported

N: Number of measurements considered in calculating the annual concentration. L: Number of sampling locations considered in calculating the annual concentration. Monthly max: Maximum monthly average in the year.

- sample location (Coordinate Accuracy = Precise or Not Specified)
- + regional average (Coordinate Accuracy = Reference Point of Region)

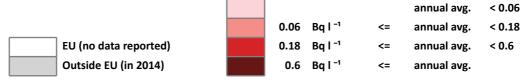
Fig.W5Sampling locations and geographical averages by year for ⁹⁰Sr in drinking water, 2013

Table W5: Geographical and time averages

YEAR 2013

SAMPLE TYPE : drinking water (Bq I ⁻¹) **NUCLIDE CATEGORY** strontium-90 (90Sr)

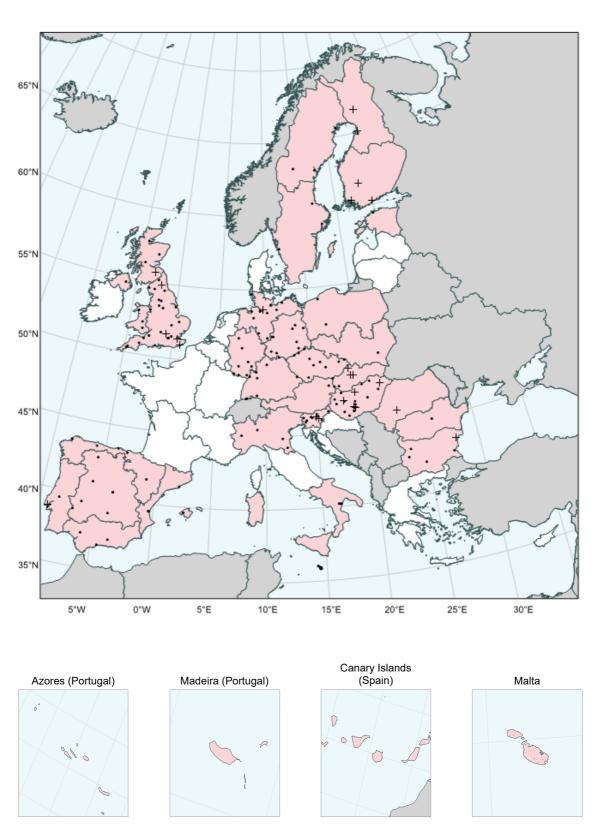
Country	N	L	1st	2nd	3rd	4th	Annual	Monthly	М
Country	'`	-	quarter	quarter	quarter	quarter	average	max	•••
AT	4	1	< RL	< RL	< RL	< RL	< RL	< RL	10
BE							Δ		
BG	8	3	< RL	< RL	< RL	< RL	< RL	< RL	11
CY									
CZ	31	8	< RL	< RL	< RL	< RL	< RL	< RL	11
DE-N	37	12	< RL	< RL	< RL	< RL	< RL	< RL	8
DE-C	14	6	< RL	< RL	< RL	< RL	< RL	< RL	9
DE-S	18	10	< RL	< RL	< RL	< RL	< RL	< RL	1
DE-E	21	9	< RL	< RL	< RL	< RL	< RL	< RL	2
DE	90	37	< RL	< RL	< RL	< RL	< RL	< RL	10
DK									
EE	2	1	< RL			< RL	< RL	< RL	2
ES-N	29	5	< RL	< RL	< RL	< RL	< RL	< RL	6
ES-C	44	7	< RL	< RL	< RL	< RL	< RL	< RL	3
ES-S	40	4	< RL	< RL	< RL	< RL	< RL	< RL	5
ES-E	24	4	< RL	< RL	< RL	< RL	< RL	< RL	2
ES	137	20	< RL	< RL	< RL	< RL	< RL	< RL	6
FI-N	4	2		< RL		< RL	< RL	< RL	10
FI-S	6	3		< RL		< RL	< RL	< RL	10
FI	10	5		< RL		< RL	< RL	< RL	10
FR-NW	2	2		< RL	< RL	< RL	< RL	< RL	6
FR-NE									
FR-SW									
FR-SE									
FR	2	2		< RL	< RL	< RL	< RL	< RL	6
GB-EN	124	27	< RL	< RL	< RL	< RL	< RL	< RL	5
GB-WL	17	4	< RL	< RL	< RL	< RL	< RL	< RL	11
GB-SC	24	4	< RL	< RL	< RL	< RL	< RL	< RL	4
GB-NI	13	3	< RL	< RL	< RL	< RL	< RL	< RL	2
GB	178	38	< RL	< RL	< RL	< RL	< RL	< RL	4
GR									
HR-A									
HR-C	4	1	< RL	< RL	< RL	< RL	< RL	< RL	1
HR	4	1	< RL	< RL	< RL	< RL	< RL	< RL	1
HU	48	16	< RL	< RL	< RL	< RL	< RL	< RL	10
IE									
IT-N	1	1				< RL	< RL	< RL	12
IT-C									
IT-S									
IT	1	1				< RL	< RL	< RL	12
LT									
LU									
LV									
MT	14	13	< RL	< RL	< RL	< RL	< RL	< RL	5
NL		$\neg \neg$			İ	İ		İ	
PL-N	4	4	< RL	< RL	< RL	< RL	< RL	< RL	12
PL-S	2	2	< RL	< RL	< RL	< RL	< RL	< RL	12
PL	6	6	< RL	< RL	< RL	< RL	< RL	< RL	12
PT	21	2	< RL	< RL	< RL	< RL	< RL	< RL	1
RO-N	2	1	< RL			< RL	< RL	< RL	1
RO-S									
RO	2	1	< RL			< RL	< RL	< RL	1
SE-N	5	3		< RL	< RL		< RL	< RL	4
SE-S	5	3		< RL	< RL		< RL	< RL	4
SE	10	6		< <i>RL</i>	< RL		< <i>RL</i>	< RL	4
SI	11	11		< RL	< RL		< RL	< RL	6
SK	34	5	< RL	< RL	< RL	< RL	< RL	< RL	7
			· •=						


RL: reporting level for ^{90}Sr In drinking water, i.e. 6.0 E-02 BQ/L (see Appendix B) Δ : only constraint (<) values above the reporting level were reported

N: Number of measurements considered in calculating the annual concentration. L: Number of sampling locations considered in calculating the annual concentration.

Monthly max: Maximum monthly average in the year.

M: Month during which the maximum occurred.



Bq I ⁻¹

Bq I ⁻¹

Bq I ⁻¹

- sample location (Coordinate Accuracy = Precise or Not Specified)
- + regional average (Coordinate Accuracy = Reference Point of Region)

Fig.W6Sampling locations and geographical averages by year for ⁹⁰Sr in drinking water, 2014

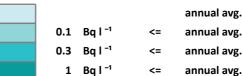
Table W6: Geographical and time averages

YEAR 2014

SAMPLE TYPE : drinking water (Bq I ⁻¹) **NUCLIDE CATEGORY** strontium-90 (90Sr)

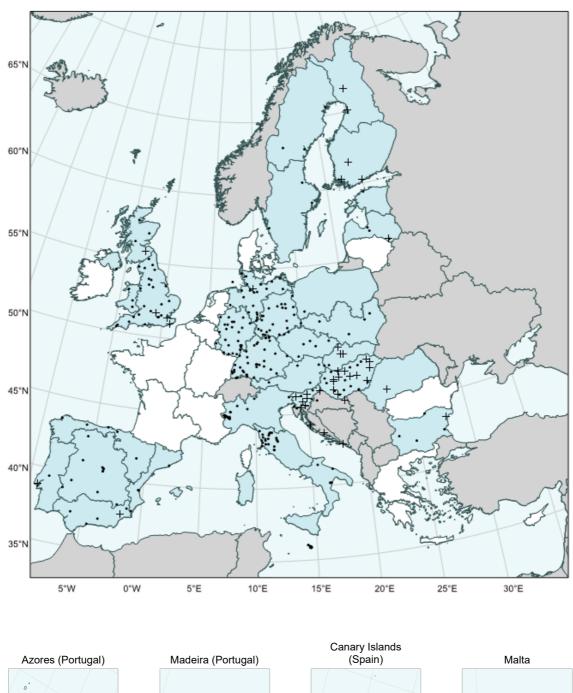
Country	N	L	1st	2nd	3rd	4th	Annual	Monthly	М
Country	'`	-	quarter	quarter	quarter	quarter	average	max	•••
AT	4	1	< RL	< RL	< RL	< RL	< RL	< RL	10
BE							Δ		
BG	17	5	< RL	< RL	< RL	< RL	< RL	< RL	1
CY									
CZ	34	11	< RL	< RL	< RL	< RL	< RL	< RL	9
DE-N	33	11	< RL	< RL	< RL	< RL	< RL	< RL	4
DE-C	18	8	< RL	< RL	< RL	< RL	< RL	< RL	6
DE-S	22	10	< RL	< RL	< RL	< RL	< RL	< RL	10
DE-E	23	9	< RL	< RL	< RL	< RL	< RL	< RL	3
DE	96	38	< RL	< RL	< RL	< RL	< RL	< RL	10
DK									
EE	2	1	< RL			< RL	< RL	< RL	10
ES-N	29	5	< RL	< RL	< RL	< RL	< RL	< RL	1
ES-C	44	7	< RL	< RL	< RL	< RL	< RL	< RL	3
ES-S	32	4	< RL	< RL	< RL	< RL	< RL	< RL	6
ES-E	24	4	< RL	< RL	< RL	< RL	< RL	< RL	9
ES	129	20	< RL	< RL	< RL	< RL	< RL	< RL	6
FI-N	4	2		< RL		< RL	< RL	< RL	10
FI-S	6	3		< RL		< RL	< RL	< RL	10
FI	10	5		< RL		< RL	< RL	< RL	10
FR-NW									
FR-NE									
FR-SW									
FR-SE									
FR									
GB-EN	120	25	< RL	< RL	< RL	< RL	< RL	< RL	2
GB-WL	18	4	< RL	< RL	< RL	< RL	< RL	< RL	5
GB-SC	24	4	< RL	< RL	< RL	< RL	< RL	< RL	3
GB-NI	1	1	< RL				< RL	< RL	1
GB	163	34	< RL	< RL	< RL	< RL	< RL	< RL	5
GR									
HR-A									
HR-C									
HR									
HU	42	19	< RL	< RL	< RL	< RL	< RL	< RL	4
IE									
IT-N	10	4	< RL	< RL	< RL	< RL	< RL	< RL	6
IT-C									
IT-S	3	3		< RL			< RL	< RL	5
IT	13	7	< RL	< RL	< RL	< RL	< RL	< RL	4
LT									
LU									
LV									
MT	7	7		< RL	< RL		< RL	< RL	7
NL	ĺ .								
PL-N	2	2	< RL	< RL	< RL	< RL	< RL	< RL	1
PL-S	1	1	< RL	< RL	< RL	< RL	< RL	< RL	1
PL	3	3	< RL	< RL	< RL	< RL	< RL	< RL	1
PT	24	2	< RL	< RL	< RL	< RL	< RL	< RL	3
RO-N	2	1	< RL	< RL	< RL	< RL	< RL	< RL	1
RO-S	1	1				< RL	< RL	< RL	11
RO	3	2	< RL	< RL	< RL	< RL	< RL	< RL	1
SE-N	6	3	6.0E-02	< RL	< RL	< RL	< RL	6.0E-02	3
SE-S	6	3	6.0E-02	< RL	< RL	< RL	< RL	6.0E-02	3
SE	12	6	6.0E-02	< RL	< RL	< RL	< RL	6.0E-02	3
SI	14	11	< RL	< RL	< RL	< RL	< RL	< RL	3
SK	35	5	< RL	< RL	< RL	< RL	< RL	< RL	4

RL: reporting level for ^{90}Sr In drinking water, i.e. 6.0 E-02 BQ/L (see Appendix B) Δ : only constraint (<) values above the reporting level were reported


N: Number of measurements considered in calculating the annual concentration. L: Number of sampling locations considered in calculating the annual concentration.

Monthly max: Maximum monthly average in the year.

M: Month during which the maximum occurred.



Bq I ⁻¹ < 0.3 annual avg. Bq I ⁻¹ < 1 annual avg.

< 0.1

Bq I ⁻¹

- annual avg.
- sample location (Coordinate Accuracy = Precise or Not Specified)
- regional average (Coordinate Accuracy = Reference Point of Region)

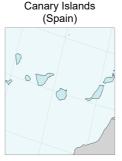


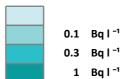
Fig.W7 Sampling locations and geographical averages by year for ¹³⁷Cs in drinking water, 2012

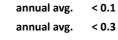
Table W7: Geographical and time averages

YEAR 2012

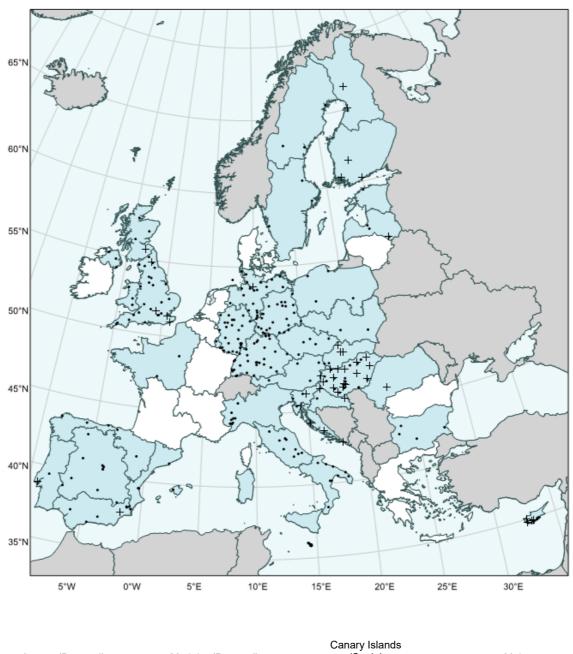
SAMPLE TYPE : drinking water (Bq I ⁻¹) caesium-137 (¹³⁷Cs) **NUCLIDE CATEGORY**

Country	N	L	1st	2nd	3rd	4th	Annual	Monthly	М
_			quarter	quarter	quarter	quarter	average	max	
AT	48	4	< RL	< RL	< RL	< RL	< RL	< RL	11
BE							Δ		
BG	14	5	< RL	< RL	< RL	< RL	< RL	1.0E-01	9
CY									
CZ	54	7	< RL	< RL	< RL	< RL	< RL	< RL	4
DE-N	67	22	< RL	< RL	< RL	< RL	< RL	< RL	8
DE-C	67	23	< RL	< RL	< RL	< RL	< RL	< RL	3
DE-S	122	39	< RL	< RL	< RL	< RL	< RL	< RL	5
DE-E	88	24	< RL	< RL	< RL	< RL	< RL	< RL	12
DE	344	108	< RL	< RL	< RL	< RL	< RL	< RL	12
DK									
EE	2	1	< RL			< RL	< RL	< RL	2
ES-N	60	5	< RL	< RL	< RL	< RL	< RL	< RL	6
ES-C	89	11	< RL	< RL	< RL	< RL	< RL	< RL	11
ES-S	56	6	< RL	< RL	< RL	< RL	< RL	< RL	12
ES-E	37	4	< RL	< RL	< RL	< RL	< RL	< RL	9
ES	242	26	< RL	< RL	< RL	< RL	< RL	< RL	6
FI-N	4	2		< RL		< RL	< RL	< RL	4
FI-S	6	3		< RL		< RL	< RL	< RL	10
FI	10	5		< RL		< RL	< RL	< RL	10
FR-NW									
FR-NE									
FR-SW									
FR-SE							Δ		
FR							Δ		
GB-EN	123	26	< RL	< RL	< RL	< RL	< RL	< RL	5
GB-WL	19	4	< RL	< RL	< RL	< RL	< RL	< RL	8
GB-SC	24	4	< RL	< RL	< RL	< RL	< RL	< RL	4
GB-NI	5	1	< RL	< RL	< RL	< RL	< RL	< RL	1
GB	171	35	< RL	< RL	< RL	< RL	< RL	< RL	5
GR									
HU	72	31	< RL	< RL	< RL	< RL	< RL	< RL	6
IE									
IT-N	34	16	< RL	< RL	< RL	< RL	< RL	< RL	10
IT-C	37	23	< RL	< RL	< RL	< RL	< RL	< RL	8
IT-S	7	5		< RL	4				
IT	78	44	< RL	< RL	< RL	< RL	< RL	< RL	8
LT									
LU	22	1	< RL	< RL	< RL	< RL	< RL	< RL	9
LV	11	4		< RL	5				
MT	13	12	< RL	< RL	< RL	< RL	< RL	< RL	6
NL									
PL-N	1	1	< RL	< RL	< RL	< RL	< RL	< RL	1
PL-S	4	4	< RL	< RL	< RL	< RL	< RL	< RL	1
PL	5	5	< RL	< RL	< RL	< RL	< RL	< RL	1
PT	23	2	< RL	< RL	< RL	< RL	< RL	< RL	1
RO-N	1	1				< RL	< RL	< RL	12
RO-S									
RO	1	1				< RL	< RL	< RL	12
SE-N	6	3		< RL	10				
SE-S	6	3		< RL		< RL	< RL	< RL	10
SE	12	6		< RL	10				
SI	10	9	< RL	< RL	İ	< RL	< RL	< RL	6
SK	36	5	< RL	< RL	< RL	< RL	< RL	< RL	12


RL: reporting level for ^{137}Cs In drinking water, i.e. 1.0 E-01 BQ/L (see Appendix B) Δ : only constraint (<) values above the reporting level were reported


N: Number of measurements considered in calculating the annual concentration. L: Number of sampling locations considered in calculating the annual concentration. Monthly max: Maximum monthly average in the year.

M: Month during which the maximum occurred.



< 0.3 Bq l ⁻¹ < 1 Bq l ⁻¹

Bq I ⁻¹

annual avg. < 1 Bq annual avg.

- sample location (Coordinate Accuracy = Precise or Not Specified)
- + regional average (Coordinate Accuracy = Reference Point of Region)

Fig.W8Sampling locations and geographical averages by year for ¹³⁷Cs in drinking water, 2013

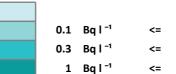
Table W8: Geographical and time averages

YEAR 2013

SAMPLE TYPE : drinking water (Bq I ⁻¹) caesium-137 (137Cs) **NUCLIDE CATEGORY**

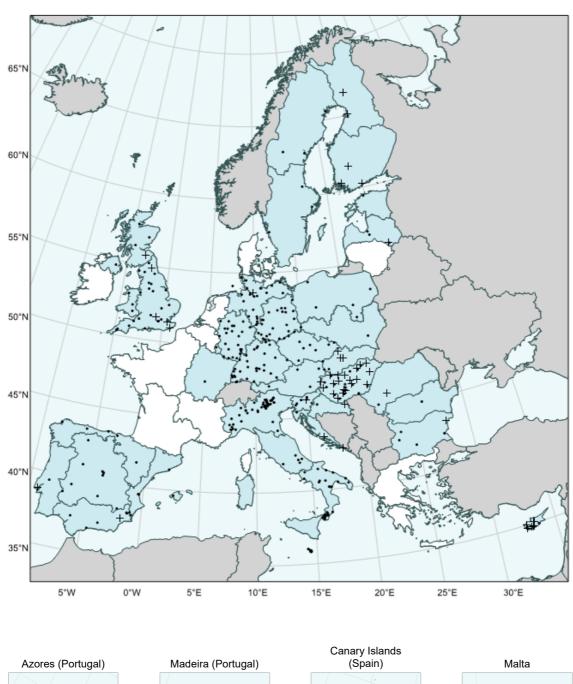
Country	N	L	1st	2nd	3rd	4th	Annual	Monthly	М
_			quarter	quarter	quarter	quarter	average	max	
AT	48	4	< RL	< RL	< RL	< RL	< RL	< RL	12
BE							Δ		
BG	11	4	< RL	< RL	< RL	< RL	< RL	< RL	7
CY	9	9	< RL				< RL	< RL	2
CZ	56	7	< RL	< RL	< RL	< RL	< RL	< RL	3
DE-N	78	22	< RL	< RL	< RL	< RL	< RL	< RL	11
DE-C	92	25	< RL	< RL	< RL	< RL	< RL	< RL	12
DE-S	114	34	< RL	< RL	< RL	< RL	< RL	< RL	6
DE-E	86	24	< RL	< RL	< RL	< RL	< RL	< RL	11
DE	370	105	< RL	< RL	< RL	< RL	< RL	< RL	8
DK									
EE	2	1	< RL			< RL	< RL	< RL	2
ES-N	60	5	< RL	< RL	< RL	< RL	< RL	< RL	9
ES-C	90	11	< RL	< RL	< RL	< RL	< RL	< RL	6
ES-S	60	8	< RL	< RL	< RL	< RL	< RL	< RL	9
ES-E	46	5	< RL	< RL	< RL	< RL	< RL	< RL	11
ES	256	29	< RL	< RL	< RL	< RL	< RL	< RL	6
FI-N	4	2		< RL		< RL	< RL	< RL	10
FI-S	6	3		< RL		< RL	< RL	< RL	10
FI	10	5		< RL		< RL	< RL	< RL	10
FR-NW	2	2		< RL	< RL	< RL	< RL	< RL	11
FR-NE									
FR-SW									
FR-SE	İ								
FR	2	2		< RL	< RL	< RL	< RL	< RL	11
GB-EN	124	27	< RL	< RL	< RL	< RL	< RL	< RL	5
GB-WL	17	4	< RL	< RL	< RL	< RL	< RL	< RL	8
GB-SC	24	4	< RL	< RL	< RL	< RL	< RL	< RL	5
GB-NI	13	3	< RL	< RL	< RL	< RL	< RL	< RL	1
GB	178	38	< RL	< RL	< RL	< RL	< RL	< RL	4
GR									
HR-A	5	5		< RL		< RL	< RL	< RL	11
HR-C	6	3	< RL	< RL	< RL	< RL	< RL	< RL	1
HR	11	8	< RL	< RL	< RL	< RL	< RL	< RL	1
HU	106	34	< RL	< RL	< RL	< RL	< RL	< RL	2
IE									
IT-N	11	9	< RL	< RL	< RL	< RL	< RL	< RL	1
IT-C	14	9	< RL	< RL	< RL	< RL	< RL	< RL	6
IT-S	11	9		< RL	< RL	< RL	< RL	< RL	9
IT	36	27	< RL	< RL	< RL	< RL	< RL	< RL	9
LT	<u> </u>					· · · -		· · · ·	
LU	26	1	< RL	< RL	< RL	< RL	< RL	< RL	10
LV	15	4	< RL	< RL	< RL	< RL	< RL	< RL	2
MT	14	13	< RL	< RL	< RL	< RL	< RL	< RL	6
NL						· · · -		· · · ·	
PL-N	4	4	< RL	< RL	< RL	< RL	< RL	< RL	1
PL-S	2	2	< RL	< <i>RL</i>	< RL	< RL	< RL	< RL	12
PL	6	6	< RL	< <i>RL</i>	< RL	< RL	< RL	< RL	12
PT	22	2	< RL	< RL	< RL	< RL	< RL	< RL	11
RO-N	2	1	< RL	< RL	< RL	< RL	< RL	< RL	2
RO-S	-			· ·-					-
RO RO	2	1	< RL	< RL	< RL	< RL	< RL	< RL	2
SE-N	6	3	- INE	< RL	< RL	-77.	< RL	< RL	4
SE-S	6	3		< RL	< RL	< RL	< RL	< RL	4
SE-S	12	6		< RL	< RL	< RL	< RL	< RL	4
SI	3	3		< RL		\ \ \ \ \ \ \ \	< RL	< RL	
			- DI		- DI	∠ DI			4
SK	36	5	< RL	< RL	< RL	< RL	< RL	< RL	12

RL: reporting level for ^{137}Cs In drinking water, i.e. 1.0 E-01 BQ/L (see Appendix B) Δ : only constraint (<) values above the reporting level were reported


N: Number of measurements considered in calculating the annual concentration. L: Number of sampling locations considered in calculating the annual concentration.

Monthly max: Maximum monthly average in the year.

M: Month during which the maximum occurred.



Bq I ⁻¹ annual avg. < 0.1 Bq I ⁻¹ < 0.3 annual avg. Bq I ⁻¹

< 1

- annual avg. annual avg.
- sample location (Coordinate Accuracy = Precise or Not Specified)
- regional average (Coordinate Accuracy = Reference Point of Region)

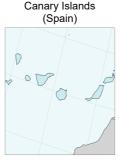


Fig.W9 Sampling locations and geographical averages by year for ¹³⁷Cs in drinking water, 2014

Table W9: Geographical and time averages

2014 **YEAR**

SAMPLE TYPE : drinking water (Bq I ⁻¹) caesium-137 (¹³⁷Cs) **NUCLIDE CATEGORY**

Country	N	L	1st	2nd	3rd	4th	Annual	Monthly	М
-			quarter	quarter	quarter	quarter	average	max	
AT	48	4	< RL	1					
BE							Δ		
BG	19	5	< RL	5					
CY	9	9				< RL	< RL	< RL	10
CZ	65	11	< RL	2					
DE-N	73	21	< RL	5					
DE-C	64	23	< RL	3					
DE-S DE-E	117 93	34 24	< RL < RL	< RL < RL	< RL < RL	< RL < RL	< RL < RL	< RL < RL	2
DE-E	347	102	< RL	8 2					
DK	347	102	\ NL	\ \KL					
EE	2	1	< RL			< RL	< RL	< RL	2
ES-N	60	5	< RL	8					
ES-C	89	11	< RL	11					
ES-S	63	8	< RL	12					
ES-E	50	5	< RL	3					
ES	262	29	< RL	3					
FI-N	4	2		< RL		< RL	< RL	< RL	10
FI-S	6	3		< RL		< RL	< RL	< RL	10
FI	10	5		< RL		< RL	< RL	< RL	10
FR-NW									
FR-NE	1	1		< RL			< RL	< RL	5
FR-SW	ļ								
FR-SE									_
FR	1	1	. 5/	< RL	. 5/	. 5/	< RL	< RL	5
GB-EN GB-WL	120 18	25 4	< RL < RL	< RL < RL	< RL < RL	< RL < RL	< RL < RL	< RL < RL	11 8
GB-WL GB-SC	25	4	< RL	0 10					
GB-SC GB-NI	1	1	< RL	\ \KL	\ \KL	NL	< RL	< RL	10
GB	164	34	< RL	10					
GR						/	7.2	7.2	
HR-A	3	3		< RL	10				
HR-C	6	2	< RL	1					
HR	9	5	< RL	1					
HU	131	40	< RL	12					
IE									
IT-N	98	51	< RL	8					
IT-C	6	5		< RL		< RL	< RL	< RL	12
IT-S	35	33	< RL	1					
IT	139	89	< RL	5					
LT			. 5/	. 5/	. 5/	. 5/	. 54	. 5/	
LU	22	1	< RL	5					
LV MT	16 7	7		< RL	< RL < RL	< RL	< RL < RL	< RL < RL	4
NL				< RL	\ RL		\ RL	\ RL	4
PL-N	13	5	< RL	3					
PL-S	1	1	< RL	1					
PL PL	14	6	< RL	3					
PT	23	2	< RL	2					
RO-N	3	2	< RL	1					
RO-S	1	1				< RL	< RL	< RL	11
RO	4	3	< RL	1					
SE-N	6	3	< RL	9					
SE-S	6	3	< RL	9					
SE	12	6	< RL	9					
SI	7	7	< RL	< RL		< RL	< RL	< RL	5
CK	200	-	4 DI	4.07	4.01	4.04	4.01	- DI	

RL: reporting level for ^{137}Cs In drinking water, i.e. 1.0 E-01 BQ/L (see Appendix B) Δ : only constraint (<) values above the reporting level were reported

< RL

< RL

< RL

< RL

< RL

5

36

3

< RL

N: Number of measurements considered in calculating the annual concentration. L: Number of sampling locations considered in calculating the annual concentration.

Monthly max: Maximum monthly average in the year.

M: Month during which the maximum occurred.

Bq I ⁻¹

Bq I ⁻¹

Bq I ⁻¹

< 0.2

< 0.6

< 2

- sample location (Coordinate Accuracy = Precise or Not Specified)
- + regional average (Coordinate Accuracy = Reference Point of Region)

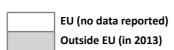
Fig.M1Sampling locations and geographical averages by year for ⁹⁰Sr in milk, 2012

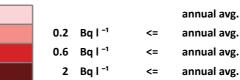
Table M1: Geographical and time averages

YEAR 2012

SAMPLE TYPE : milk (Bq I ⁻¹)

NUCLIDE CATEGORY strontium-90 (90Sr)



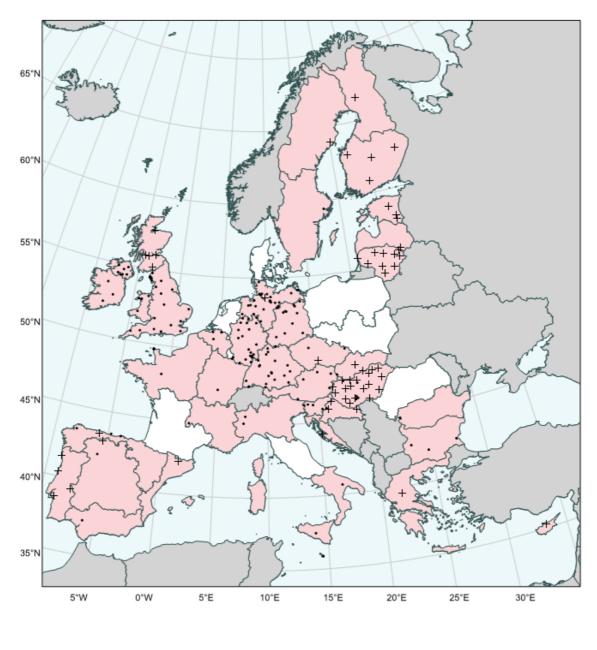

Country	N	L	1st	2nd	3rd	4th	Annual	Monthly	М
,		_	quarter	quarter	quarter	quarter	average	max	
AT	19	8	< RL	< RL	< RL	< RL	< RL	< RL	1
BE	40	3	< RL	< RL	< RL	< RL	< RL	< RL	3
BG	22	4	< RL	< RL	< RL	< RL	< RL	< RL	12
CY	6	1	< RL	< RL	< RL	< RL	< RL	< RL	1
CZ	6	4	< RL	< RL	< RL	< RL	< RL	< RL	1
DE-N	128	29	< RL	< RL	< RL	< RL	< RL	< RL	7
DE-C	71	21	< RL	< RL	< RL	< RL	< RL	< RL	12
DE-S	75	24	< RL	< RL	< RL	< RL	< RL	< RL	11
DE-E	58	6	< RL	< RL	< RL	< RL	< RL	< RL	7
DE	332	80	< RL	< RL	< RL	< RL	< RL	< RL	12
DK									
EE	12	3	< RL	< RL	< RL	< RL	< RL	< RL	10
ES-N	40	4	< RL	< RL	< RL	< RL	< RL	< RL	2
ES-C	8	2	< RL	< RL	< RL	< RL	< RL	< RL	2
ES-S	12	1	< RL	< RL	< RL	< RL	< RL	< RL	1
ES-E	12	1	< RL	< RL	< RL	< RL	< RL	< RL	1
ES	72	8	< RL	< RL	< RL	< RL	< RL	< RL	2
FI-N	4	1	< RL	< RL	< RL	< RL	< RL	< RL	7
FI-S	16	4	< RL	< RL	< RL	< RL	< RL	< RL	7
FI	20	5	< RL	< RL	< RL	< RL	< RL	< RL	7
FR-NW	9	4		< RL			< RL	< RL	6
FR-NE									
FR-SW									
FR-SE									
FR	9	4		< RL			< RL	< RL	6
GB-EN	154	13	< RL	< RL	< RL	< RL	< RL	< RL	5
GB-WL	24	2	< RL	< RL	< RL	< RL	< RL	< RL	4
GB-SC	28	5	< RL	< RL	< RL	< RL	< RL	< RL	7
GB-NI	36	5	< RL	< RL	< RL	< RL	< RL	< RL	4
GB	242	25	< RL	< RL	< RL	< RL	< RL	< RL	5
GR	11	1	< RL	2.3E-01	3.7E-01	2.3E-01	2.5E-01	4.8E-01	9
HU	60	9	< RL	< RL	< RL	< RL	< RL	< RL	1
IE	15	4	< RL	< RL	< RL	< RL	< RL	< RL	11
IT-N	32	10	< RL	< RL	< RL	< RL	< RL	< RL	1
IT-C									
IT-S	1	1				< RL	< <i>RL</i>	< RL	10
IT	33	11	< RL	< RL	< RL	< RL	< RL	< RL	1
LT	40	11	< RL	< RL	< RL	< RL	< RL	< RL	2
LU			. 5/				. 5/	. 57	
LV	3	1	< RL	4.01	4.04	4.01	< RL	< RL	1
MT NL	4 12	1	< RL < RL	< RL < RL	< RL < RL	< RL < RL	< RL < RL	< RL < RL	3
PL-N	12	1	· KL	\ KL	\ KL	\ KL	\ KL	\ KL	7
PL-S PL									
PT	35	6	< RL	< RL	< RL	< RL	< RL	< RL	
	35	- 0	· RL	\ KL	\ KL	\ KL	\ KL	\ RL	4
RO-N RO-S		4			_ DI		/ DI	_ DI	7
	1 1	1			< RL < RL		< RL < RL	< RL < RL	7 7
RO SE N		1	< RL	, DI		< RL		< RL < RL	7
SE-N	4	1		< RL < RL	< RL < RL	1	< RL < RL	< RL < RL	5
SE-S SE	4 8	1	< RL < RL		< RL < RL	< RL < RL	< RL < RL	< RL < RL	2 11
SI	30	2	< RL	< RL < RL	< RL	< RL < RL	< RL	< RL	2
SK	11	2	< RL	< RL	< RL	< RL	< RL	< RL	4
SK.			< KL	\ KL	\ KL	\	\ KL	\ KL	4

RL: reporting level for 90 Sr In milk, i.e. 2.0 E-01 BQ/L (see Appendix B)

N: Number of measurements considered in calculating the annual concentration. L: Number of sampling locations considered in calculating the annual concentration. Monthly max: Maximum monthly average in the year.

Bq I ⁻¹

Bq I ⁻¹


Bq I ⁻¹

< 0.2

< 0.6

< 2

- sample location (Coordinate Accuracy = Precise or Not Specified)
- + regional average (Coordinate Accuracy = Reference Point of Region)

Fig.M2Sampling locations and geographical averages by year for ⁹⁰Sr in milk, 2013

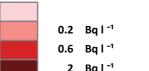
Table M2: Geographical and time averages

YEAR 2013

milk (Bq I ⁻¹) **SAMPLE TYPE** :

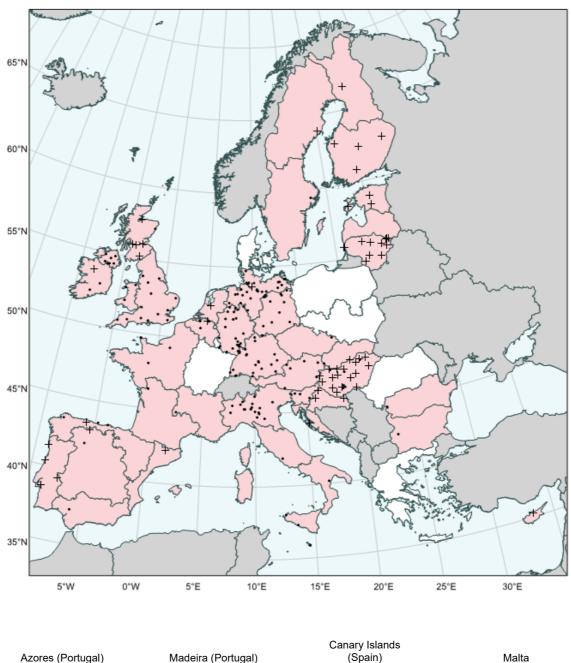
NUCLIDE CATEGORY strontium-90 (90Sr)

Country	N	L	1st	2nd	3rd	4th	Annual	Monthly	М
Country	N	-	quarter	quarter	quarter	quarter	average	max	IVI
AT	18	6	< RL	< RL	< RL	< RL	< RL	< RL	4
BE	41	4	< RL	< RL	< RL	< RL	< RL	< RL	3
BG	18	3	< RL	< RL	< RL	< RL	< RL	< RL	10
CY	6	1		< RL	< RL		< RL	< RL	8
CZ	6	3	< RL	< RL	< RL	< RL	< RL	< RL	4
DE-N	120	29	< RL	< RL	< RL	< RL	< RL	< RL	3
DE-C	67	21	< RL	< RL	< RL	< RL	< RL	< RL	2
DE-S	65	20	< RL	< RL	< RL	< RL	< RL	< RL	11
DE-E	74	11	< RL	< RL	< RL	< RL	< RL	< RL	12
DE	326	81	< RL	< RL	< RL	< RL	< RL	< RL	2
DK									
EE	12	3	< RL	< RL	< RL	< RL	< RL	< RL	3
ES-N	40	4	< RL	< RL	< RL	< RL	< RL	< RL	7
ES-C	8	2	< RL	< RL	< RL	< RL	< RL	< RL	2
ES-S	12	1	< RL	< RL	< RL	< RL	< RL	< RL	3
ES-E	12	1	< RL	< RL	< RL	< RL	< RL	< RL	11
ES	72	8	< RL	< RL	< RL	< RL	< RL	< RL	3
FI-N	4	1	< RL	< RL	< RL	< RL	< RL	< RL	10
FI-S	16	4	< RL	< RL	< RL	< RL	< RL	< RL	10
FI	20	5	< RL	< RL	< RL	< RL	< RL	< RL	10
FR-NW	9	5		< RL	< RL	< RL	< RL	< RL	10
FR-NE	1	1		< RL			< RL	< RL	6
FR-SW									
FR-SE	1	1		< RL			< RL	< RL	6
FR	11	7		< RL	< RL	< RL	< RL	< RL	10
GB-EN	210	34	< RL	< RL	< RL	< RL	< RL	< RL	3
GB-WL	44	5	< RL	< RL	< RL	< RL	< RL	< RL	10
GB-SC	28	5	< RL	< RL	< RL	< RL	< RL	< RL	9
GB-NI	72	6	< RL	< RL	< RL	< RL	< RL	< RL	3
GB	354	50	< RL	< RL	< RL	< RL	< RL	< RL	3
GR	12	1	< RL	< RL	< RL	< RL	< RL	< RL	10
HR-A	12	1	< RL	< RL	< RL	< RL	< RL	< RL	10
HR-C	35	4	< RL	< RL	< RL	< RL	< RL	< RL	1
HR	47	5	< RL	< RL	< RL	< RL	< RL	< RL	1
HU	213	26	< RL	< RL	< RL	< RL	< RL	< RL	12
IE	16	4	< RL	< RL	< RL	< RL	< RL	< RL	11
IT-N	8	2	< RL	< RL	< RL	< RL	< RL	< RL	12
IT-C									
IT-S	2	2	< RL	< RL	< RL	< RL	< RL	< RL	1
IT	10	4	< RL	< RL	< RL	< RL	< RL	< RL	9
LT	41	11	< RL	< RL	< RL	< RL	< RL	< RL	7
LU									
LV	8	1		< RL	< RL	< RL	< RL	< RL	4
MT	4	1	< RL	< RL	< RL	< RL	< RL	< RL	3
NL									
PL-N									
PL-S									
PL									
PT	31	6	< RL	< RL	< RL	< RL	< RL	< RL	10
RO-N									
RO-S	1	1	< RL	< RL			< RL	< RL	1
RO	1	1	< RL	< RL			< RL	< RL	1
SE-N	4	1	< RL	< RL	< RL	< RL	< RL	< RL	3
SE-S	4	1	< RL	< RL	< RL	< RL	< RL	< RL	5
SE	8	2	< RL	< RL	< RL	< RL	< RL	< RL	3
SI	33	4	< RL	< RL	< RL	< RL	< RL	< RL	10
SK	14	2	< RL	< RL	< RL	< RL	< RL	< RL	7


RL: reporting level for 90 Sr In milk, i.e. 2.0 E-01 BQ/L (see Appendix B)

N: Number of measurements considered in calculating the annual concentration. L: Number of sampling locations considered in calculating the annual concentration. Monthly max: Maximum monthly average in the year.

M: Month during which the maximum occurred.



- 2 Bq l ⁻¹ <= annual avg.
- sample location (Coordinate Accuracy = Precise or Not Specified)
- + regional average (Coordinate Accuracy = Reference Point of Region)

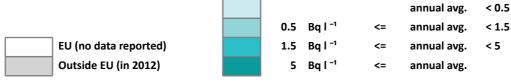
Fig.M3Sampling locations and geographical averages by year for ⁹⁰Sr in milk, 2014

Table M3: Geographical and time averages

YEAR 2014

milk (Bq I ⁻¹) **SAMPLE TYPE** :

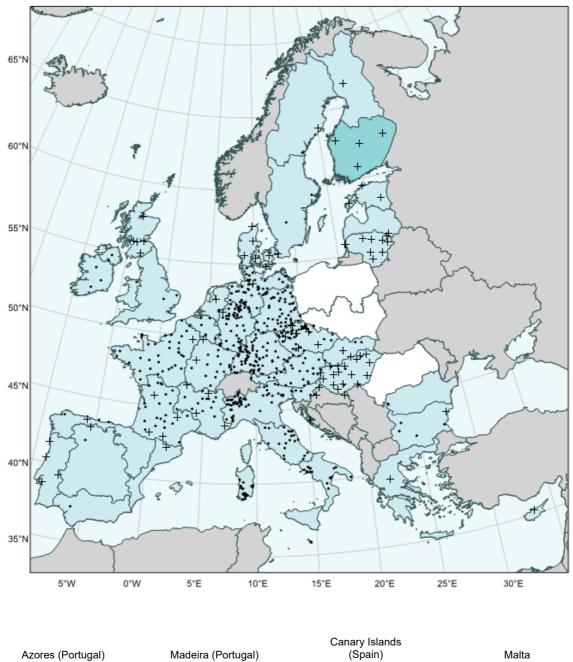
NUCLIDE CATEGORY strontium-90 (90Sr)

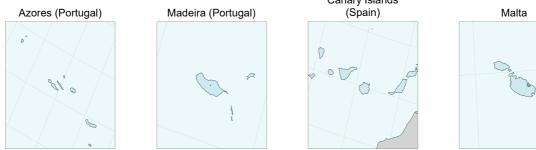

Country	N	L	1st	2nd	3rd	4th	Annual	Monthly	М
		_	quarter	quarter	quarter	quarter	average	max	
AT	18	7	< RL	< RL	< RL	< RL	< RL	< RL	5
BE	44	6	< RL	< RL	< RL	< RL	< RL	< RL	12
BG	13	1	< RL	< RL	< RL	< RL	< RL	< RL	12
CY	3	1		< RL		1	< RL	< RL	4
CZ	4	1	< RL	< RL	< RL	< RL	< RL	< RL	1
DE-N	122	32	< RL	< RL	< RL	< RL	< RL	< RL	11
DE-C	71	22	< RL	< RL	< RL	< RL	< RL	< RL	10
DE-S	72	21	< RL	< RL	< RL	< RL	< RL	< RL	1
DE-E	69	9	< RL	< RL	< RL	< RL	< RL	< RL	5
DE	334	84	< RL	< RL	< RL	< RL	< RL	< RL	10
DK									
EE	12	3	< RL	< RL	< RL	< RL	< RL	< RL	2
ES-N	40	4	< RL	< RL	< RL	< RL	< RL	< RL	1
ES-C	8	2	< RL	< RL	< RL	< RL	< RL	< RL	10
ES-S	12	1	< RL	< RL	< RL	< RL	< RL	< RL	6
ES-E	12	1	< RL	< RL	< RL	< RL	< RL	< RL	11
ES	72	8	< RL	< RL	< RL	< RL	< RL	< RL	2
FI-N	4	1	< RL	< RL	< RL	< RL	< RL	< RL	7
FI-S	16	4	< RL	< RL	< RL	< RL	< RL	< RL	7
FI	20	5	< RL	< RL	< RL	< RL	< RL	< RL	7
FR-NW	4	4		< RL		< RL	< RL	< RL	4
FR-NE									
FR-SW	1	1		< RL			< RL	< RL	6
FR-SE	1	1		< RL			< RL	< RL	6
FR	6	6		< RL		< RL	< RL	< RL	4
GB-EN	145	13	< RL	< RL	< RL	< RL	< RL	< RL	3
GB-WL	36	3	< RL	< RL	< RL	< RL	< RL	< RL	2
GB-SC	91	6	< RL	< RL	< RL	< RL	< RL	< RL	4
GB-NI	70	6	< RL	< RL	< RL	< RL	< RL	< RL	9
GB	342	28	< RL	< RL	< RL	< RL	< RL	< RL	2
GR									
HR-A	7	1	< RL	< RL	< RL	< RL	< RL	< RL	3
HR-C	28	3	< RL	< RL	< RL	< RL	< RL	< RL	1
HR	35	4	< RL	< RL	< RL	< RL	< RL	< RL	8
HU	202	25	< RL	< RL	< RL	< RL	< RL	< RL	12
IE	14	4	< RL	< RL	< RL	< RL	< RL	< RL	5
IT-N	60	17	< RL	< RL	< RL	< RL	< RL	< RL	10
IT-C	1	1			< RL	< RL	< RL	< RL	9
IT-S	6	3	< RL	< RL	< RL	< RL	< RL	< RL	4
IT	67	21	< RL	< RL	< RL	< RL	< RL	< RL	10
LT	45	12	< RL	< RL	< RL	< RL	< RL	< RL	12
LU									
LV	8	2	< RL	< RL	< RL	< RL	< RL	< RL	1
MT	3	1		< RL	< RL		< RL	< RL	4
NL	12	1	< RL	< RL	< RL	< RL	< RL	< RL	1
PL-N									
PL-S									
PL									
PT	36	6	< RL	< RL	< RL	< RL	< RL	< RL	10
RO-N									
RO-S	1	1				< RL	< RL	< RL	10
RO	1	1				< RL	< RL	< RL	10
SE-N	4	1	< RL	< RL		< RL	< RL	< RL	2
SE-S	4	1	< RL	< RL		< RL	< RL	< RL	10
SE	8	2	< RL	< RL		< RL	< RL	< RL	12
SI	32	4	< RL	< RL	< RL	< RL	< RL	< RL	5
SK	3	1	< RL	< RL	< RL		< RL	< RL	5

RL: reporting level for 90 Sr In milk, i.e. 2.0 E-01 BQ/L (see Appendix B)

N: Number of measurements considered in calculating the annual concentration. L: Number of sampling locations considered in calculating the annual concentration. Monthly max: Maximum monthly average in the year.

M: Month during which the maximum occurred.




Bq I ⁻¹

Bq I ⁻¹

Bq I ⁻¹

- sample location (Coordinate Accuracy = Precise or Not Specified)
- + regional average (Coordinate Accuracy = Reference Point of Region)

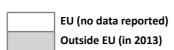
Fig.M4Sampling locations and geographical averages by year for ¹³⁷Cs in milk, 2012

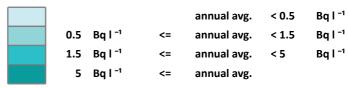
Table M4: Geographical and time averages

YEAR : 2012

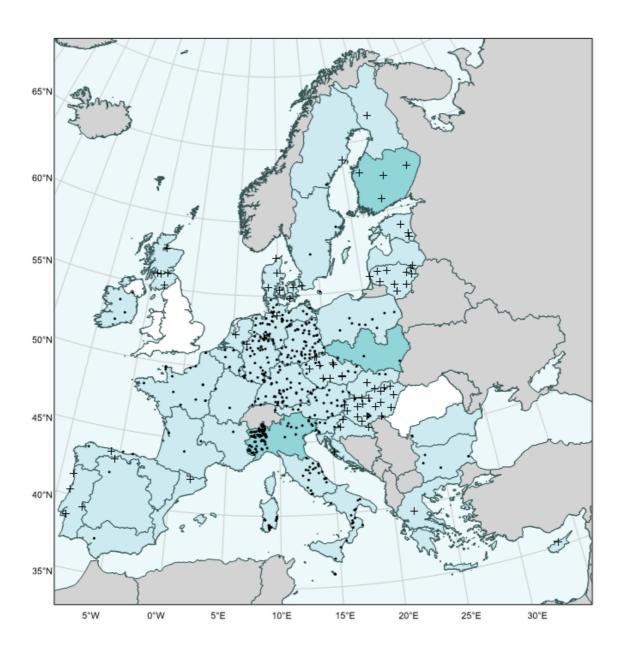
SAMPLE TYPE : milk (Bq I ⁻¹)

NUCLIDE CATEGORY : caesium-137 (137Cs)


Country	N	L	1st	2nd	3rd	4th	Annual	Monthly	М
Country	'`	-	quarter	quarter	quarter	quarter	average	max	
AT	173	29	< RL	< RL	< RL	< RL	< RL	< RL	7
BE	159	3	< RL	< RL	< RL	< RL	< RL	< RL	2
BG	22	5	< RL	< RL	< RL	< RL	< RL	< RL	9
CY	6	1	< RL	< RL	< RL	< RL	< RL	< RL	7
CZ	67	51	< RL	< RL	< RL	< RL	< RL	< RL	6
DE-N	373	45	< RL	< RL	< RL	< RL	< RL	< RL	11
DE-C	240	49	< RL	< RL	< RL	< RL	< RL	< RL	11
DE-S	354	72	< RL	< RL	< RL	< RL	< RL	< RL	11
DE-E	320	45	< RL	< RL	< RL	< RL	< RL	< RL	2
DE	1287	211	< RL	< RL	< RL	< RL	< RL	< RL	11
DK	40	7	< RL	< RL	< RL	< RL	< RL	< RL	6
EE	12	3	< RL	< RL	< RL	< RL	< RL	< RL	6
ES-N	40	4	< RL	< RL	< RL	< RL	< RL	< RL	8
ES-C	8	2	< RL	< RL	< RL	< RL	< RL	< RL	8
ES-S	12	1	< RL	< RL	< RL	< RL	< RL	< RL	9
ES-E	12	1	< RL	< RL	< RL	< RL	< RL	< RL	5
ES	72	8	< RL	< RL	< RL	< RL	< RL	< RL	8
FI-N	4	1	< RL	< RL	< RL	< RL	< RL	< RL	7
FI-S	16	4	5.1E-01	< RL	5.8E-01	5.4E-01	5.3E-01	5.8E-01	7
FI	20	5	< RL	< RL	5.2E-01	< RL	< RL	5.2E-01	7
FR-NW	67	40	< RL	< RL	< RL	< RL	< RL	< RL	10
FR-NE	28	21	< RL	< RL	< RL	< RL	< RL	< RL	10
FR-SW	37	25	< RL	< RL	< RL	< RL	< RL	< RL	9
FR-SE	19	16	< RL	< RL	< RL	< RL	< RL	< RL	9
FR	151	102	< RL	< RL	< RL	< RL	< RL	< RL	9
GB-EN	12	2	< RL	< RL	< RL	< RL	< RL	< RL	3
GB-WL	12	1	< RL	< RL	< RL	< RL	< RL	< RL	3
GB-SC	28	5	< RL	< RL	< RL	< RL	< RL	< RL	5
GB-NI	12	1	< RL	< RL	< RL	< RL	< RL	< RL	2
GB	64	9	< RL	< RL	< RL	< RL	< RL	< RL	2
GR	11	1	< RL	< RL	< RL	< RL	< RL	< RL	1
HU	203	25	< RL	< RL	< RL	< RL	< RL	< RL	3
IE	24	4	< RL	< RL	< RL	< RL	< RL	< RL	3
IT-N	280	55	< RL	< RL	< RL	< RL	< RL	< RL	9
IT-C	145	21	< RL	< RL	< RL	< RL	< RL	< RL	3
IT-S	272	41	< RL	< RL	< RL	< RL	< RL	< RL	12
IT	697	117	< RL	< RL	< RL	< RL	< RL	< RL	9
LT	45	11	< RL	< RL	< RL	< RL	< RL	< RL	8
LU	33	3	< RL	< RL	< RL	< RL	< RL	< RL	4
LV	8	1	< RL	< RL	< RL	< RL	< RL	< RL	3
MT	4	1	< RL	< RL	< RL	< RL	< RL	< RL	6
NL	24	1	< RL	< RL	< RL	< RL	< RL	< RL	1
PL-N									
PL-S									
PL									
PT	35	6	< RL	< RL	< RL	< RL	< RL	< RL	4
RO-N									
RO-S	1	1			< RL		< RL	< RL	7
RO	1	1			< RL		< RL	< RL	7
SE-N	8	2	< RL	< RL	< RL	< RL	< RL	< RL	11
SE-S	12	3	< RL	< RL	< RL	< RL	< RL	< RL	5
SE	20	5	< RL	< RL	< RL	< RL	< RL	< RL	11
SI	30	4	< RL	< RL	< RL	< RL	< RL	< RL	7
SK	24	4	< RL	< RL	< RL	< RL	< RL	< RL	11


RL: reporting level for $^{\rm 137}{\rm Cs}$ In milk, i.e. 5.0 E-01 BQ/L (see Appendix B)

N: Number of measurements considered in calculating the annual concentration. L: Number of sampling locations considered in calculating the annual concentration. Monthly max: Maximum monthly average in the year.


M: Month during which the maximum occurred.



- sample location (Coordinate Accuracy = Precise or Not Specified)
- + regional average (Coordinate Accuracy = Reference Point of Region)

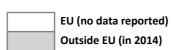
Fig.M5Sampling locations and geographical averages by year for ¹³⁷Cs in milk, 2013

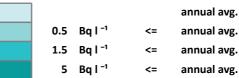
Table M5: Geographical and time averages

YEAR 2013

SAMPLE TYPE : milk (Bq I ⁻¹)

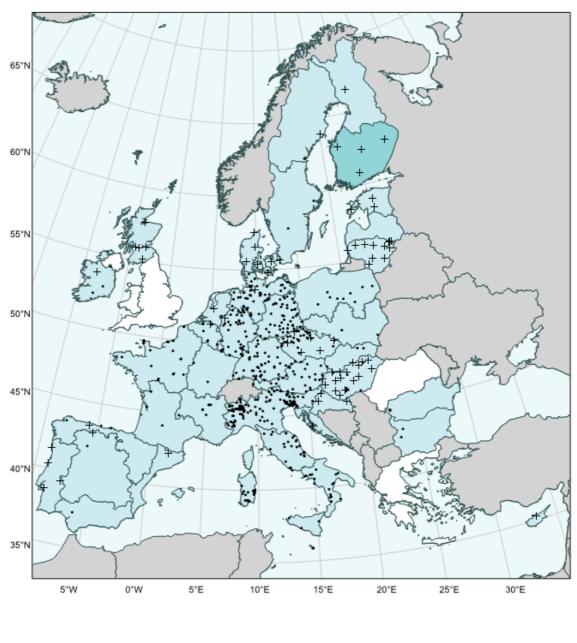
NUCLIDE CATEGORY caesium-137 (137Cs)


Country	N	L	1st	2nd	3rd	4th	Annual	Monthly	М
		_	quarter	quarter	quarter	quarter	average	max	
AT	178	27	< RL	< RL	< RL	< RL	< RL	< RL	9
BE	158	4	< RL	< RL	< RL	< RL	< RL	< RL	10
BG	23	4	< RL	< RL	< RL	< RL	< RL	< RL	8
CY	6	1		< RL	< RL		< RL	< RL	5
CZ	58	20	< RL	< RL	< RL	< RL	< RL	< RL	6
DE-N	370	44	< RL	< RL	< RL	< RL	< RL	< RL	7
DE-C	223	45	< RL	< RL	< RL	< RL	< RL	< RL	4
DE-S	323	44	< RL	< RL	< RL	< RL	< RL	< RL	12
DE-E	295	51	< RL	< RL	< RL	< RL	< RL	< RL	4
DE	1211	184	< RL	< RL	< RL	< RL	< RL	< RL	4
DK	39	7	< RL	< RL	< RL	< RL	< RL	< RL	8
EE	12	3	< RL	< RL	< RL	< RL	< RL	< RL	6
ES-N	40	4	< RL	< RL	< RL	< RL	< RL	< RL	9
ES-C	8	2	< RL	< RL	< RL	< RL	< RL	< RL	2
ES-S	12	1	< RL	< RL	< RL	< RL	< RL	< RL	12
ES-E	12	1	< RL	< RL	< RL	< RL	< RL	< RL	4
ES	72	8	< RL	< RL	< RL	< RL	< RL	< RL	9
FI-N	4	1	< RL	< RL	< RL	< RL	< RL	< RL	10
FI-S	16	4	6.7E-01	< RL	5.3E-01	5.6E-01	5.6E-01	6.7E-01	1
FI	20	5	5.8E-01	< RL	< RL	5.1E-01	< RL	5.8E-01	1
FR-NW	30	18	< RL	< RL	< RL	< RL	< RL	< RL	11
FR-NE	10	5		< RL	< RL	< RL	< RL	< RL	11
FR-SW	4	2		< RL		< RL	< RL	< RL	4
FR-SE	2	2	< RL	< RL			< RL	< RL	6
FR	46	27	< RL	< RL	< RL	< RL	< RL	< RL	4
GB-EN									
GB-WL									
GB-SC	28	5	< RL	< RL	< RL	< RL	< RL	< RL	1
GB-NI									
GB	28	5	< RL	< RL	< RL	< RL	< RL	< RL	1
GR	11	1	< RL	< RL	< RL	< RL	< RL	< RL	1
HR-A	12	1	< RL	< RL	< RL	< RL	< RL	< RL	8
HR-C	35	4	< RL	< RL	< RL	< RL	< RL	< RL	2
HR	47	5	< RL	< RL	< RL	< RL	< RL	< RL	2
HU	268	29	< RL	< RL	< RL	< RL	< RL	< RL	9
IE	23	4	< RL	< RL	< RL	< RL	< RL	< RL	10
IT-N	196	95	< RL	< RL	1.6E+00	< RL	5.4E-01	2.9E+00	8
IT-C	58	24	< RL	< RL	< RL	< RL	< RL	< RL	7
IT-S	121	29	< RL	< RL	< RL	< RL	< RL	< RL	5
IT	375	148	< RL	< RL	< RL	< RL	< RL	8.4E-01	8
LT	42	11	< RL	< RL	< RL	< RL	< RL	< RL	7
LU	36	3	< RL	< RL	< RL	< RL	< RL	< RL	11
LV	8	1		< RL	< RL	< RL	< RL	< RL	10
MT	4	1	< RL	< RL	< RL	< RL	< RL	< RL	9
NL	12	1	< RL	< RL	< RL	< RL	< RL	< RL	1
PL-N	31	9	< RL	8.3E-01	< RL	< RL	< RL	8.3E-01	4
PL-S	11	2	6.6E-01	6.5E-01	5.9E-01	1.3E+00	8.1E-01	2.7E+00	12
PL	42	11	< RL	7.0E-01	< RL	8.9E-01	6.0E-01	1.5E+00	12
PT	37	6	< RL	< RL	< RL	< RL	< RL	< RL	10
RO-N									
RO-S	1	1	< RL	< RL			< RL	< RL	1
RO	1	1	< RL	< RL			< RL	< RL	1
SE-N	8	2	< RL	< RL	< RL	< RL	< RL	< RL	11
SE-S	12	3	< RL	< RL	< RL	< RL	< RL	< RL	8
SE	20	5	< RL	< RL	< RL	< RL	< RL	< RL	3
SI	30	4	< RL	< RL	< RL	< RL	< RL	< RL	9
SK	25	4	< RL	< RL	< RL	< RL	< RL	< RL	5


RL: reporting level for $^{\rm 137}{\rm Cs}$ In milk, i.e. 5.0 E-01 BQ/L (see Appendix B)

N: Number of measurements considered in calculating the annual concentration. L: Number of sampling locations considered in calculating the annual concentration. Monthly max: Maximum monthly average in the year.

M: Month during which the maximum occurred.



annual avg. < 1.5 Bq l⁻¹ annual avg. < 5 Bq l⁻¹

< 0.5


Bq I ⁻¹

- annual avg.
- sample location (Coordinate Accuracy = Precise or Not Specified)
- + regional average (Coordinate Accuracy = Reference Point of Region)

Fig.M6Sampling locations and geographical averages by year for ¹³⁷Cs in milk, 2014

Table M6: Geographical and time averages

YEAR 2014

SAMPLE TYPE : milk (Bq I ⁻¹)

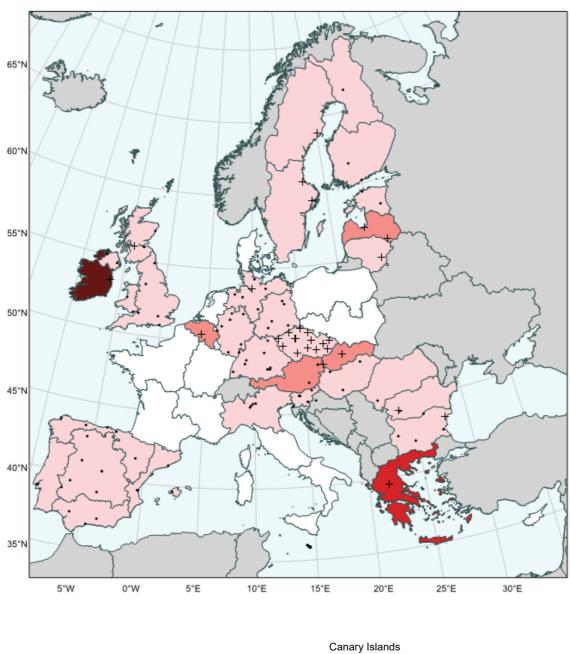
NUCLIDE CATEGORY caesium-137 (137Cs)

Country	N	L	1st	2nd	3rd	4th	Annual	Monthly	М
		_	quarter	quarter	quarter	quarter	average	max	
AT	178	28	< RL	< RL	< RL	< RL	< RL	< RL	9
BE	161	6	< RL	< RL	< RL	< RL	< RL	< RL	4
BG	14	2	< RL	< RL	< RL	< RL	< RL	< RL	10
CY	3	1		< RL			< RL	< RL	4
CZ	55	39	< RL	< RL	< RL	< RL	< RL	< RL	12
DE-N	355	44	< RL	< RL	< RL	< RL	< RL	< RL	1
DE-C	228	41	< RL	< RL	< RL	< RL	< RL	< RL	6
DE-S	308	45	< RL	< RL	< RL	< RL	< RL	< RL	3
DE-E	284	45	< RL	< RL	< RL	< RL	< RL	< RL	12
DE	1175	175	< RL	< RL	< RL	< RL	< RL	< RL	6
DK	42	7	< RL	< RL	< RL	< RL	< RL	< RL	6
EE	12	3	< RL	< RL	< RL	< RL	< RL	< RL	7
ES-N	40	4	< RL	< RL	< RL	< RL	< RL	< RL	7
ES-C	8	2	< RL	< RL	< RL	< RL	< RL	< RL	5
ES-S	12	1	< RL	< RL	< RL	< RL	< RL	< RL	1
ES-E	12	1	< RL	< RL	< RL	< RL	< RL	< RL	8
ES	72	8	< RL	< RL	< RL	< RL	< RL	< RL	7
FI-N	12	1	< RL	< RL	< RL	< RL	< RL	< RL	11
FI-S	48	4	< RL	5.3E-01	6.2E-01	7.6E-01	6.0E-01	9.6E-01	10
FI	60	5	< RL	< RL	5.5E-01	6.7E-01	5.3E-01	8.3E-01	10
FR-NW	41	24	< RL	< RL	< RL	< RL	< RL	< RL	2
FR-NE	10	6		< RL	< RL	< RL	< RL	< RL	6
FR-SW	6	3		< RL		< RL	< RL	< RL	6
FR-SE	9	7		< RL		< RL	< RL	< RL	5
FR	66	40	< RL	< RL	< RL	< RL	< RL	< RL	5
GB-EN									
GB-WL									
GB-SC	28	5	< RL	< RL	< RL	< RL	< RL	< RL	8
GB-NI									
GB	28	5	< RL	< RL	< RL	< RL	< RL	< RL	8
GR									
HR-A	7	1	< RL	< RL	< RL	< RL	< RL	< RL	9
HR-C	28	3	< RL	< RL	< RL	< RL	< RL	< RL	12
HR	35	4	< RL	< RL	< RL	< RL	< RL	< RL	12
HU	273	25	< RL	< RL	< RL	< RL	< RL	< RL	3
IE	23	4	< RL	< RL	< RL	< RL	< RL	< RL	12
IT-N	459	113	< RL	< RL	< RL	< RL	< RL	5.1E-01	9
IT-C	102	28	< RL	< RL	< RL	< RL	< RL	< RL	7
IT-S	157	39	< RL	< RL	< RL	< RL	< RL	< RL	10
IT	718	180	< RL	< RL	< RL	< RL	< RL	< RL	9
LT	42	10	< RL	< RL	< RL	< RL	< RL	< RL	10
LU	35	3	< RL	< RL	< RL	< RL	< RL	< RL	5
LV	8	2	< RL	< RL	< RL	< RL	< RL	< RL	3
MT	3	1		< RL	< RL		< RL	< RL	4
NL	12	1	< RL	< RL	< RL	< RL	< RL	< RL	1
PL-N	40	9	< RL	5.5E-01	< RL	< RL	< RL	6.5E-01	5
PL-S	11	2	< RL	< RL	< RL	7.3E-01	< RL	9.0E-01	12
PL	51	11	< RL	5.4E-01	< RL	5.1E-01	< RL	6.9E-01	11
PT	36	6	< RL	< RL	< RL	< RL	< RL	< RL	12
RO-N									
RO-S	1	1				< RL	< RL	< RL	10
RO	1	1			<u></u>	< RL	< RL	< RL	10
SE-N	8	2	< RL	< RL	< RL	< RL	< RL	5.9E-01	10
SE-S	12	3	< RL	< RL	< RL	< RL	< RL	< RL	11
SE	20	5	< RL	< RL	< RL	< RL	< RL	< RL	10
SI	33	4	< RL	< RL	< RL	< RL	< RL	< RL	1
SK	12	3	< RL	< RL	< RL	< RL	< RL	< RL	11
		_							

RL: reporting level for $^{\rm 137}{\rm Cs}$ In milk, i.e. 5.0 E-01 BQ/L (see Appendix B)

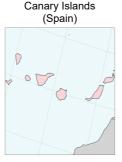
N: Number of measurements considered in calculating the annual concentration. L: Number of sampling locations considered in calculating the annual concentration. Monthly max: Maximum monthly average in the year.

M: Month during which the maximum occurred.


annual avg. < 0.1 annual avg. < 0.3

< 0.3 Bq d⁻¹ p⁻¹
< 1 Bq d⁻¹ p⁻¹

Bq d⁻¹ p⁻¹


annual avg. annual avg.

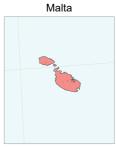
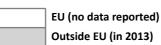

- . sample location (Coordinate Accuracy = Precise or Not Specified)
- + regional average (Coordinate Accuracy = Reference Point of Region)

Fig.D1Sampling locations and geographical averages by year for ⁹⁰Sr in mixed diet, 2012

Table D1: Geographical and time averages

YEAR 2012

SAMPLE TYPE : mixed diet (Bq d⁻¹ p⁻¹) **NUCLIDE CATEGORY** strontium-90 (90Sr)


Country	N	L	1st	2nd	3rd	4th	Annual	Monthly	М
			quarter	quarter	quarter	quarter	average	max	
AT	8	2	1.2E-01	< RL	< RL	< RL	1.0E-01	1.3E-01	2
BE	3	1	< RL	2.2E-01	1.7E-01		1.5E-01	2.2E-01	4
BG	16	5	< RL	< RL	< RL	1.1E-01	< RL	1.2E-01	12
CY									
CZ	22	14	< RL	< RL	< RL	< RL	< RL	< RL	1
DE-N	30	6	< RL	< RL	< RL	< RL	< RL	< RL	1
DE-C	32	8	< RL	< RL	< RL	< RL	< RL	< RL	12
DE-S	27	8	< RL	< RL	1.1E-01	< RL	< RL	1.2E-01	9
DE-E	28	5	< RL	< RL	< RL	< RL	< RL	< RL	10
DE	117	27	< RL	< RL	< RL	< RL	< RL	< RL	9
DK									
EE	4	2	< RL			< RL	< RL	< RL	10
ES-N	20	5	< RL	< RL	< RL	< RL	< RL	< RL	3
ES-C	25	7	< RL	< RL	< RL	< RL	< RL	1.3E-01	7
ES-S	15	4	< RL	< RL	< RL	< RL	< RL	< RL	5
ES-E	17	4	< RL	< RL	< RL	< RL	< RL	< RL	1
ES	77	20	< RL	< RL	< RL	< RL	< RL	< RL	3
FI-N	1	1				< RL	< RL	< RL	10
FI-S	2	2				< RL	< RL	< RL	10
FI	3	3				< RL	< RL	< RL	10
FR-NW									
FR-NE									
FR-SW									
FR-SE									
FR									
GB-EN	8	5	< RL	< RL	< RL	< RL	< RL	< RL	11
GB-WL	5	2	< RL	< RL	< RL	< RL	< RL	< RL	11
GB-SC	14	3	< RL	< RL	< RL	1.1E-01	< RL	1.5E-01	12
GB-NI	5	2	< RL	< RL	< RL	< RL	< RL	< RL	4
GB	32	12	< RL	< RL	< RL	< RL	< RL	1.5E-01	12
GR	11	1	2.0E-01	3.3E-01	5.0E-01	4.0E-01	3.6E-01	6.4E-01	7
HU	5	3	< RL		< RL		< RL	< RL	3
IE	6	1	7.1E-01	3.6E+00	6.2E-01	5.7E-01	1.4E+00	3.6E+00	4
IT-N	4	4	< RL	< RL	< RL	< RL	< RL	< RL	1
IT-C									
IT-S									
IT	4	4	< RL	< RL	< RL	< RL	< RL	< RL	1
LT	12	1	< RL	< RL	< RL	< RL	< RL	< RL	1
LU				5.45.04	2.25.04	5,	2 = 5	5.45.04	
LV	4	2		5.1E-01	2.2E-01	< RL	2.7E-01	5.1E-01	6
MT	12	11	1.4E-01	< RL	1.1E-01	< RL	1.0E-01	2.1E-01	7
NL DL N							Δ		
PL-N									
PL-S									
PL				5,				5,	
PT	11	1	< RL	< RL	< RL	< RL	< RL	< RL	9
RO-N	1	1	< RL				< RL	< RL	3
RO-S	6	2	< RL	< RL			< RL	< RL	6
RO N	7	3	< RL	< RL		4.05.04	< RL	< RL	6
SE-N	2	1		< RL		1.2E-01	< RL	1.2E-01	11
SE-S	4	2		< RL		< RL	< RL	1.2E-01	5
SE	6	3	. 5'	< RL	4.51	< RL	< RL	< RL	5
SI	5	5	< RL	4.07.51	< RL	< RL	< RL	< RL	2
SK	8	2	1.2E-01	1.6E-01	< RL	1.3E-01	1.2E-01	1.6E-01	5

RL: reporting level for 90 Sr In mixed diet, i.e. 1.0 E-01 BQ/D.P (see Appendix B) Δ : only constraint (<) values above the reporting level were reported

N: Number of measurements considered in calculating the annual concentration. L: Number of sampling locations considered in calculating the annual concentration. Monthly max: Maximum monthly average in the year.

M: Month during which the maximum occurred.

 $Bq d^{-1} p^{-1}$ $Bq\ d^{-1}\ p^{-1}$

Bq d⁻¹ p⁻¹

annual avg.

- sample location (Coordinate Accuracy = Precise or Not Specified)
- regional average (Coordinate Accuracy = Reference Point of Region)

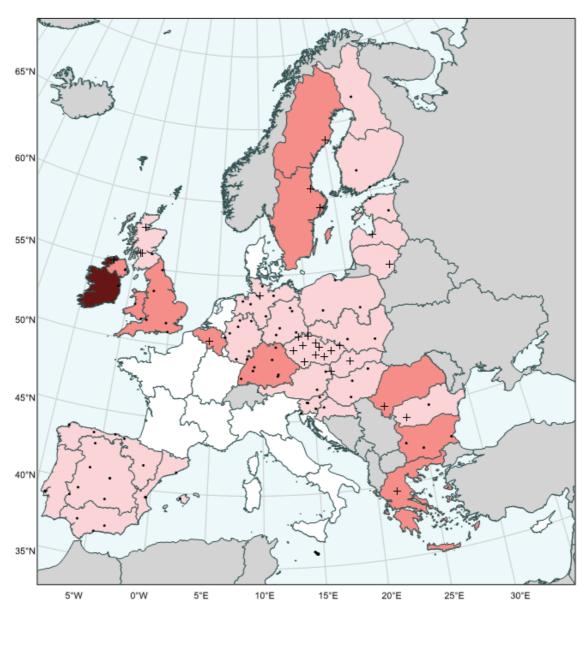


Fig.D2 Sampling locations and geographical averages by year for 90Sr in mixed diet, 2013

Table D2: Geographical and time averages

YEAR 2013

SAMPLE TYPE : mixed diet (Bq d⁻¹ p⁻¹) **NUCLIDE CATEGORY** strontium-90 (90Sr)

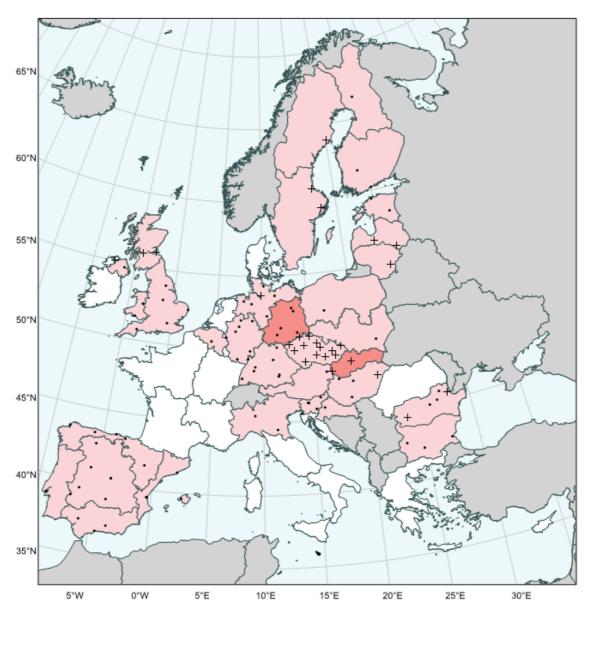
Country	N	L	1st	2nd	3rd	4th	Annual	Monthly	М
,		_	quarter	quarter	quarter	quarter	average	max	
AT	6	2	< RL	< RL	< RL	< RL	< RL	< RL	10
BE	2	1	1.5E-01			2.4E-01	2.0E-01	2.4E-01	12
BG	11	3	5.6E-01	< RL	< RL	< RL	2.1E-01	7.7E-01	2
CY									
CZ	19	12	< RL	< RL	< RL	< RL	< RL	< RL	1
DE-N	35	6	< RL	< RL	< RL	< RL	< RL	< RL	1
DE-C	32	8	< RL	< RL	< RL	< RL	< RL	1.1E-01	6
DE-S	24	7	1.2E-01	< RL	2.1E-01	1.5E-01	1.3E-01	2.2E-01	8
DE-E	27	5	< RL	< RL	< RL	< RL	< RL	< RL	8
DE	118	26	< RL	< RL	< RL	< RL	< RL	< RL	8
DK									
EE	4	2	< RL			< RL	< RL	< RL	10
ES-N	20	5	< RL	< RL	< RL	< RL	< RL	< RL	3
ES-C	26	7	< RL	< RL	< RL	< RL	< RL	< RL	2
ES-S	16	4	< RL	< RL	< RL	< RL	< RL	1.5E-01	3
ES-E	16	4	< RL	< RL	< RL	< RL	< RL	< RL	3
ES	78	20	< RL	< RL	< RL	< RL	< RL	< RL	8
FI-N	1	1				< RL	< RL	< RL	10
FI-S	2	2				< RL	< RL	< RL	11
FI	3	3				< RL	< RL	< RL	11
FR-NW									
FR-NE									
FR-SW									
FR-SE									
FR									
GB-EN	8	5	1.8E-01	< <i>RL</i>	< RL	1.6E-01	1.1E-01	2.9E-01	1
GB-WL	5	2	< RL	1.6E-01	2.1E-01	1.5E-01	1.4E-01	2.1E-01	5
GB-SC	17	5	1.2E-01	< RL	< RL	< RL	< RL	1.6E-01	3
GB-NI	5	2	1.2E-01	< RL	< RL	2.7E-01	1.3E-01	2.7E-01	11
GB	35	14	1.4E-01	< RL	< RL	1.5E-01	1.2E-01	2.1E-01	11
GR	12	1	1.2E-01	1.0E-01	1.0E-01	1.0E-01	1.1E-01	1.6E-01	3
HR-A	12		1.2L-01	7.0L-07	1.0L-01	1.0L-01	1.1L-01	1.0L-01	
HR-C	5	1				< RL	< RL	< RL	12
HR	5	1				< RL	< RL	< RL	12
HU	7	3	< RL	< RL	< RL	< RL	< RL	< RL	4
IE	1	1	4.8E+00	\\L	· NL	· NL	4.8E+00	4.8E+00	2
IT-N	<u> </u>		4.02.00				4.0L.00	4.0L 100	
IT-C									
IT-S									
IT									
LT	12	1	< RL	< RL	< RL	< RL	< RL	< RL	11
LU	12		- TAL	· NL	· NL	· NL	· NL	· ILL	- 11
LV	2	1			< RL	< RL	< <i>RL</i>	< RL	12
MT	12	11	< RL	< RL	< RL	< RL	< RL	< RL	9
NL	12	- ' '	· nL	` \\L	- NL	· NL	Δ	- NL	3
PL-N	3	3	< RL	< RL	< RL	< RL	∠ × RL	< RL	1
PL-N PL-S	2	2	< RL	< RL	< RL	< RL	< RL	< RL	
	5	5			< RL < RL	1	1	<	1
PL PT	11	1	< RL < RL	< RL < RL	< RL	< RL < RL	< RL < RL	< RL	1
RO-N	11	_	2.3E-01	2.3E-01	2.3E-01	2.3E-01	2.3E-01	2.3E-01	
RO-N		1			2.3E-01 < RL	1	1	2.3E-01 < RL	1
l	5	2	< RL	< RL	l .	< RL	< RL	1	12
RO SE N	6	3	1.2E-01	< RL	< RL	< RL	< RL	1.2E-01	1
SE-N	2	1		1.3E-01		2.4E-01	1.9E-01	2.4E-01	11
SE-S	4	2		< RL		2.0E-01	1.3E-01	2.0E-01	10
SE	6	3		< RL		2.2E-01	1.6E-01	2.4E-01	11
SI	5	5	< RL	< RL			< RL	< RL	3
SK	8	2	< RL	< RL	< RL	< RL	< RL	< RL	2

RL: reporting level for 90 Sr In mixed diet, i.e. 1.0 E-01 BQ/D.P (see Appendix B) Δ : only constraint (<) values above the reporting level were reported

N: Number of measurements considered in calculating the annual concentration. L: Number of sampling locations considered in calculating the annual concentration.

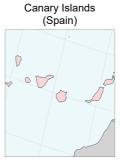
Monthly max: Maximum monthly average in the year.

M: Month during which the maximum occurred.


annual avg. < 0.1 annual avg. < 0.3 annual avg. < 1

3 Bq d⁻¹ p⁻¹ Bq d⁻¹ p⁻¹

Bq d⁻¹ p⁻¹


annual avg.

- sample location (Coordinate Accuracy = Precise or Not Specified)
- + regional average (Coordinate Accuracy = Reference Point of Region)

Fig.D3Sampling locations and geographical averages by year for ⁹⁰Sr in mixed diet, 2014

Table D3: Geographical and time averages

YEAR 2014

SAMPLE TYPE : mixed diet (Bq d⁻¹ p⁻¹) **NUCLIDE CATEGORY** strontium-90 (90Sr)

Country	N	L	1st	2nd	3rd	4th	Annual	Monthly	М
			quarter	quarter	quarter	quarter	average	max	
AT	4	1	< RL	< RL	1.0E-01	1.1E-01	< RL	1.1E-01	10
BE	2	1	< RL			< RL	< RL	< RL	10
BG	12	3	1.2E-01	< RL	< RL	< RL	< RL	1.2E-01	2
CY									
CZ	20	14	< RL	< RL	< RL	< RL	< RL	< RL	7
DE-N	32	6	< RL	< RL	< RL	< RL	< RL	< RL	6
DE-C	30	8	< RL	< RL	< RL	< RL	< RL	< RL	9
DE-S	22	7	< RL	< RL	< RL	< RL	< RL	1.1E-01	12
DE-E	31	5	< RL	< RL	< RL	2.9E-01	1.1E-01	3.6E-01	12
DE	115	26	< RL	< RL	< RL	1.4E-01	< RL	1.7E-01	12
DK									
EE	4	2	< RL			< RL	< RL	< RL	10
ES-N	20	5	< RL	< RL	< RL	< RL	< RL	< RL	8
ES-C	26	7	< RL	< RL	< RL	< RL	< RL	1.0E-01	2
ES-S	16	4	< RL	< RL	< RL	< RL	< RL	< RL	10
ES-E	16	4	< RL	< RL	< RL	< RL	< RL	< RL	11
ES	78	20	< RL	< RL	< RL	< RL	< RL	< RL	2
FI-N	1	1			İ	< RL	< RL	< RL	10
FI-S	2	2				< RL	< RL	< RL	10
FI	3	3				< RL	< RL	< RL	10
FR-NW					1				
FR-NE									
FR-SW									
FR-SE									
FR									
GB-EN	8	5		< RL	< RL	< RL	< RL	< RL	12
GB-WL	5	2		< RL	< RL		< RL	< RL	5
GB-SC	13	2	< RL	< RL	< RL	< RL	< RL	1.3E-01	2
GB-NI	5	2			< RL	< RL	< RL	< RL	12
GB	31	11	< RL	< RL	< RL	< RL	< RL	1.3E-01	2
GR									
HR-A									
HR-C	5	1				< RL	< RL	< RL	11
HR	5	1				< RL	< RL	< RL	11
HU	11	4	< RL		< RL		< RL	< RL	7
IE	-							· · · -	
IT-N	9	2	1.3E-01	< RL	< RL	< RL	< RL	1.3E-01	1
IT-C		-				=	· · · <u>-</u>		•
IT-S									
IT	9	2	1.3E-01	< RL	< RL	< RL	< RL	1.3E-01	1
LT	12	1	< RL	< RL	< RL	< RL	< RL	< RL	7
LU			7.2		7.2	, <u>-</u>			
LV	6	2	< RL	< RL	< RL	< RL	< RL	< RL	12
MT	6	5	7.2	< RL	< RL		< RL	< RL	4
NL	-				7.2		Δ		
PL-N	1	1	< RL	< RL	< RL	< RL	-	< RL	1
PL-S	1	1	< RL	< <i>RL</i>	< RL	< RL	< <i>RL</i>	< RL	1
PL	2	2	< RL	< RL	< RL	< RL	< RL	< RL	1
PT	11	1	< RL	< RL	< RL	< RL	< RL	< RL	2
RO-N			- 712	· AL	· AL	- / _	· NE	- 112	
RO-S	13	5	< RL	< RL	< RL	< RL	< RL	< RL	3
RO-S	13	5	< RL	< RL	< RL	< RL	< RL	< RL	3
SE-N	2	1	· NL	< RL	- NL	< RL	< RL	< RL	6
SE-N SE-S				< RL		1	< RL	< RL	
SE-S SE	4	2		< RL < RL		< RL	1	< RL < RL	5
	6		- DI	\ KL	-	< RL	< RL		6
SI	5	5	< RL	4 DI	2.05.04	5.75.04	< RL	< RL	3
SK	7	2	< RL	< RL	2.0E-01	5.7E-01	2.2E-01	5.7E-01	10

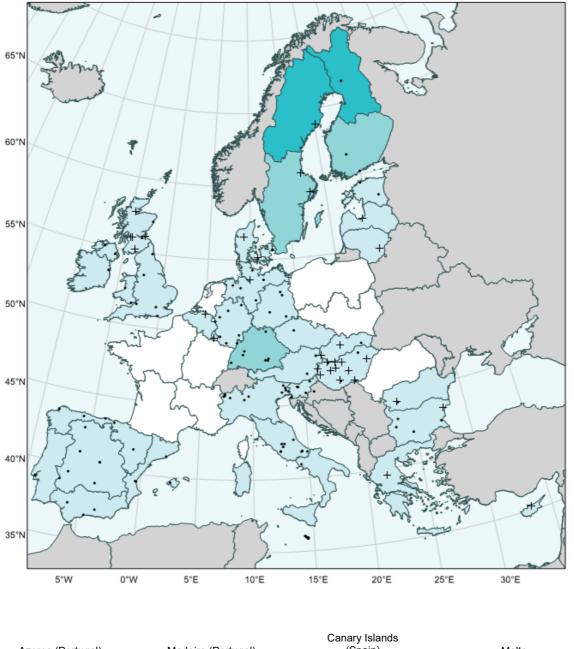
RL: reporting level for 90 Sr In mixed diet, i.e. 1.0 E-01 BQ/D.P (see Appendix B) Δ : only constraint (<) values above the reporting level were reported

N: Number of measurements considered in calculating the annual concentration. L: Number of sampling locations considered in calculating the annual concentration.

Monthly max: Maximum monthly average in the year.

M: Month during which the maximum occurred.

Bq d⁻¹ p⁻¹


Bq d⁻¹ p⁻¹

 $Bq\ d^{-1}\ p^{-1}$

< 0.2 < 0.6

< 2

- sample location (Coordinate Accuracy = Precise or Not Specified)
- + regional average (Coordinate Accuracy = Reference Point of Region)

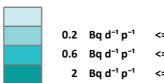
Fig.D4Sampling locations and geographical averages by year for ¹³⁷Cs in mixed diet, 2012

Table D4: Geographical and time averages

YEAR 2012

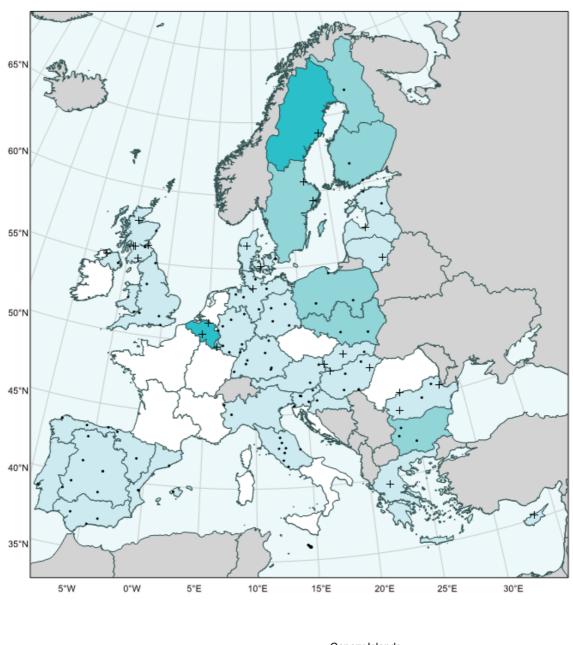
SAMPLE TYPE : mixed diet (Bq d⁻¹ p⁻¹) **NUCLIDE CATEGORY** caesium-137 (137Cs)


Country	N	L	1st	2nd	3rd	4th	Annual	Monthly	М
			quarter	quarter	quarter	quarter	average	max	
AT	23	2	< RL	< RL	< RL	2.7E-01	< RL	7.3E-01	11
BE	6	1	< RL	< RL	< RL	< RL	< RL	< RL	4
BG	14	5	< RL	< RL	< RL	< RL	< RL	2.0E-01	8
CY	10	1	< RL	< RL	< RL	< RL	< RL	< RL	3
CZ	2	1	< RL	< RL	< RL	< RL	< RL	< RL	1
DE-N	126	6	< RL	< RL	< RL	2.7E-01	< RL	4.5E-01	11
DE-C	136	8	< RL	< RL	< RL	< RL	< RL	< RL	12
DE-S	124	7	< RL	< RL	4.7E-01	2.8E-01	2.4E-01	1.2E+00	9
DE-E	79	4	< RL	< RL	< RL	< RL	< RL	2.4E-01	10
DE	465	25	< RL	< RL	< RL	< RL	< RL	< RL	11
DK	3	3		< RL			< RL	< RL	6
EE	4	2	< RL			< RL	< RL	< RL	10
ES-N	20	5	< RL	< RL	< RL	< RL	< RL	< RL	3
ES-C	28	7	< RL	< RL	< RL	< RL	< RL	< RL	6
ES-S	16	4	< RL	< RL	< RL	< RL	< RL	< RL	6
ES-E	16	4	< RL	< RL	< RL	< RL	< RL	< RL	1
ES	80	20	< RL	< RL	< RL	< RL	< RL	< RL	6
FI-N	7	1				8.9E-01	8.9E-01	8.9E-01	10
FI-S	14	2				5.9E-01	5.9E-01	5.9E-01	10
FI	21	3				6.9E-01	6.9E-01	6.9E-01	10
FR-NW									
FR-NE									
FR-SW									
FR-SE									
FR									
GB-EN	8	5	< RL	< RL	< RL	< RL	< RL	< RL	5
GB-WL	5	2	< RL	< RL	< RL	< RL	< RL	< RL	1
GB-SC	30	7	< RL	< RL	< RL	< RL	< RL	< RL	3
GB-NI	5	2	< RL	< RL	< RL	< RL	< RL	< RL	4
GB	48	16	< RL < RL	< RL	< RL < RL	< RL < RL	< RL	< RL < RL	3
GR HU	11 30	1 17	< RL	< RL < RL	< RL	3.4E-01	< RL < RL	3.4E-01	11
IE	4	17	< RL	\ KL	\ KL	3.46-01	< RL	3.4E-01 < RL	1
IT-N	23	12	< RL	< RL	< RL	3.7E-01	< RL	7.8E-01	12
IT-C	30	9	< RL	< RL	< RL	3.7L=01 < RL	< RL	7.6E-01 < RL	9
IT-S	1	1	< RL	\ \KL	\ \KL	\ \KL	< RL	< RL	3
IT	54	22	< RL	< RL	< RL	2.1E-01	< RL	4.3E-01	12
LT	12	1	< RL	< RL	< RL	< RL	< RL	< RL	10
LU	13	1	< RL	< RL	< RL	< RL	< RL	< RL	11
LV	4	1	< RL	< RL	< RL	< RL	< RL	< RL	11
MT	10	9	< RL	3.3E-01	< RL	3.5E-01	2.4E-01	5.5E-01	4
NL	- 10			0.02 07	7.2	0.02 07	Δ	0.02 07	
PL-N									
PL-S									
PL									
PT	11	1	< RL	< RL	< RL	< RL	< RL	< RL	5
RO-N	<u> </u>		<u></u>					· · · ·	
RO-S	6	2	< RL	< RL			< RL	< RL	3
RO	6	2	< RL	< <i>RL</i>			< <i>RL</i>	< <i>RL</i>	3
SE-N	2	1	<u> </u>			1.7E+00	1.7E+00	1.9E+00	12
SE-S	5	2		< RL		7.0E-01	4.3E-01	7.0E-01	10
SE	7	3		< <i>RL</i>		1.1E+00	6.5E-01	1.5E+00	11
SI	5	5	< RL	, . <u>_</u>	< <i>RL</i>		< RL	< RL	3
SK	12	3	< RL	< RL	< RL	< RL	< RL	< RL	2
		-	· -	=		=			

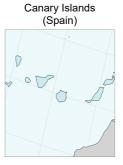

RL: reporting level for $^{197}\!Cs$ In mixed diet, i.e. 2.0 E-01 BQ/D.P (see Appendix B) Δ : only constraint (<) values above the reporting level were reported

N: Number of measurements considered in calculating the annual concentration. L: Number of sampling locations considered in calculating the annual concentration. Monthly max: Maximum monthly average in the year.

M: Month during which the maximum occurred.



annual avg. < 0.2 Bq d⁻¹ p⁻¹ annual avg. < 0.6 Bq d⁻¹ p⁻¹ annual avg. < 2 Bq d⁻¹ p⁻¹


annual avg.

- . sample location (Coordinate Accuracy = Precise or Not Specified)
- + regional average (Coordinate Accuracy = Reference Point of Region)

Fig.D5Sampling locations and geographical averages by year for ¹³⁷Cs in mixed diet, 2013

Table D5: Geographical and time averages

YEAR 2013

SAMPLE TYPE : mixed diet (Bq d⁻¹ p⁻¹) caesium-137 (¹³⁷Cs) **NUCLIDE CATEGORY**

DENSE

Country	N	L	1st	2nd	3rd	4th	Annual	Monthly	М
Country	N	-	quarter	quarter	quarter	quarter	average	max	IVI
AT	22	2	< RL	< RL	< RL	< RL	< RL	< RL	10
BE	2	2		1.0E+00		< RL	6.0E-01	1.0E+00	5
BG	10	3	< RL	< RL	< RL	5.2E-01	2.1E-01	6.9E-01	11
CY	10	1		< RL			< RL	< RL	5
CZ									
DE-N	127	6	< RL	< RL	< RL	2.5E-01	< RL	3.7E-01	12
DE-C	131	8	< RL	< RL	< RL	< RL	< RL	2.8E-01	3
DE-S	106	7	< RL	< RL	< RL	< RL	< RL	2.3E-01	12
DE-E	99	4	< RL	< RL	< RL	< RL	< RL	< RL	3
DE	463	25	< RL	< RL	< RL	< RL	< RL	2.4E-01	3
DK	3	3		< RL			< RL	< RL	6
EE	4	2	< RL			< RL	< RL	< RL	2
ES-N	20	5	< RL	< RL	< RL	< RL	< RL	< RL	12
ES-C	28	7	< RL	< RL	< RL	< RL	< RL	< RL	10
ES-S	16	4	< RL	< RL	< RL	< RL	< RL	< RL	12
ES-E	16	4	< RL	< RL	< RL	< RL	< RL	< RL	5
ES	80	20	< RL	< RL	< RL	< RL	< RL	< RL	12
FI-N	7	1				3.6E-01	3.6E-01	3.6E-01	10
FI-S	14	2				5.5E-01	5.5E-01	6.2E-01	10
FI	21	3				5.0E-01	5.0E-01	5.2E-01	10
FR-NW									
FR-NE									
FR-SW									
FR-SE									
FR									
GB-EN	8	5	< RL	< RL	< RL	< RL	< RL	< RL	1
GB-WL	5	2	< RL	< RL	< RL	< RL	< RL	< RL	5
GB-SC	30	7	< RL	< RL	< RL	< RL	< RL	< RL	7
GB-NI	5	2	< RL	< RL	< RL	< RL	< RL	< RL	4
GB-N1	48	16	< RL	< RL	< RL	< RL	< RL	< RL	5
GR	11	10	< RL	< RL	< RL	< RL	< RL	< RL	1
HR-A		- 1	TAL	1772	-712	1772	1772	TAL	
HR-C	5	1				< RL	< RL	< RL	12
HR	5	1				< RL	< RL	< RL	12
HU	14	7	< RL	< RL	< RL	< RL	< RL	< RL	11
IE	17		TAL	17.2	-712	1772	Δ	17.2	
IT-N	3	2	< RL	< RL	< RL		< <i>RL</i>	< RL	3
IT-C	11	8	2.1E-01	< RL	2.0E-01	< RL	< RL	2.1E-01	3
IT-S	''	۱	2.1L-01	\ \\L	2.02-01	\ \\L	\ \KL	2.72-07	3
IT	14	10	< RL	< RL	< RL	< RL	< RL	2.0E-01	6
LT	12	10	< RL	< RL	< RL	< RL	< RL	< RL	9
LU	7	1	5.5E-01	< RL	< RL	1.0E+00	4.4E-01	1.0E+00	11
LV	4	1	J.JL-01	< RL	5				
MT	12	11	< RL	< RL	< RL	< RL	< RL	< RL	9
NL	12	11	> NL	- NL	- NL	- NL	Δ	- NL	
PL-N	3	3	4.2E-01	4.2E-01	4.2E-01	4.2E-01	4.2E-01	4.2E-01	1
PL-N PL-S	2	2	4.2E-01 3.4E-01	3.4E-01	3.4E-01	3.4E-01	3.4E-01	3.4E-01	1
PL-S	5	5	3.4E-01 3.9E-01	3.4E-01 3.9E-01	3.4E-01 3.9E-01	3.4E-01 3.9E-01	3.4E-01 3.9E-01	3.4E-01 3.9E-01	1
PT	12	1	3.9E-01 < RL	3.9E-01 < RL	3.9E-01 < RL	3.9E-01 < RL	3.9E-01 < RL	3.9E-01 < RL	10
RO-N	12	1	` KL	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	10
RO-N RO-S	10	_	~ DI	_ DI	_ DI		_ DI	_ DI	4
	10	5	< RL	< RL	< RL	< RL	< RL	< RL	1
RO	10	5	< RL	< RL	< RL	< RL	< RL	< RL	1
SE-N	3	1	7.05.04	7.6E-01		2.1E+00	1.4E+00	2.1E+00	11
SE-S	5	2	7.0E-01	< RL		5.1E-01	4.4E-01	7.0E-01	1
SE	8	3	7.0E-01	4.4E-01		1.3E+00	8.1E-01	2.1E+00	11
SI	5	5	< RL	< RL			< RL	< RL	3
SK	12	3	< RL	< RL	< RL	< RL	< RL	5.0E-01	1

RL: reporting level for $^{197}\!Cs$ In mixed diet, i.e. 2.0 E-01 BQ/D.P (see Appendix B) Δ : only constraint (<) values above the reporting level were reported

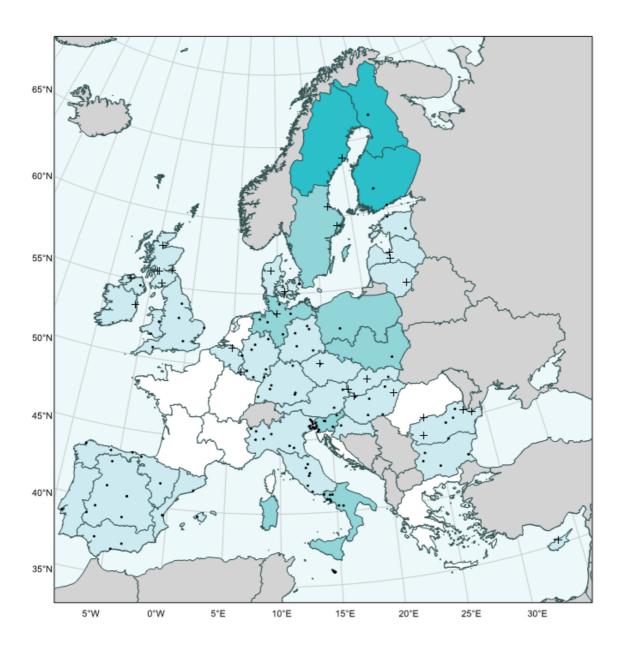
N: Number of measurements considered in calculating the annual concentration. L: Number of sampling locations considered in calculating the annual concentration.

Monthly max: Maximum monthly average in the year.

M: Month during which the maximum occurred.

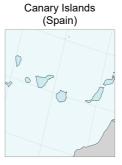
EU (no data reported)
Outside EU (in 2014)

0.2 Bq d⁻¹ p⁻¹ <= 0.6 Bq d⁻¹ p⁻¹ <=


annual avg. < 0.2 annual avg. < 0.6 annual avg. < 2

Bq d⁻¹ p⁻¹ Bq d⁻¹ p⁻¹

Bq d⁻¹ p⁻¹


annual avg.

- . sample location (Coordinate Accuracy = Precise or Not Specified)
- + regional average (Coordinate Accuracy = Reference Point of Region)

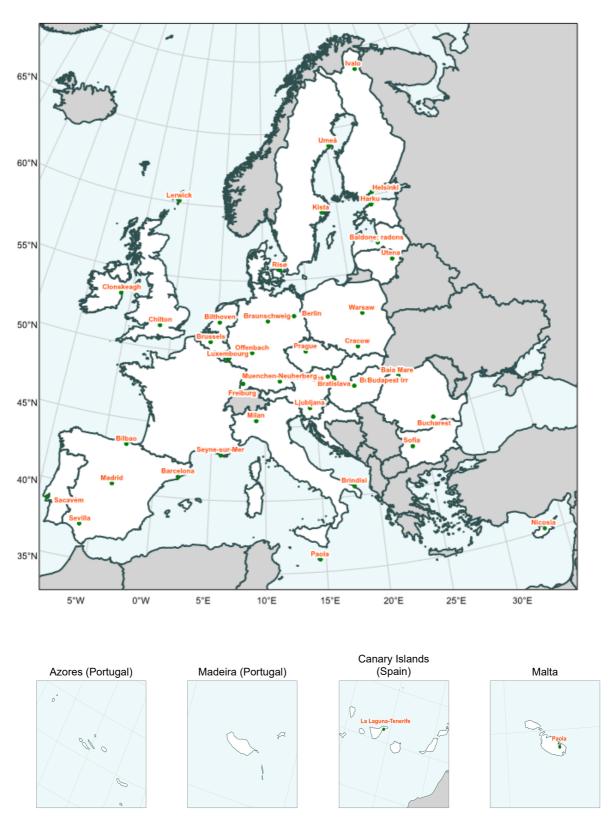
Fig.D6Sampling locations and geographical averages by year for ¹³⁷Cs in mixed diet, 2014

Table D6: Geographical and time averages

YEAR 2014

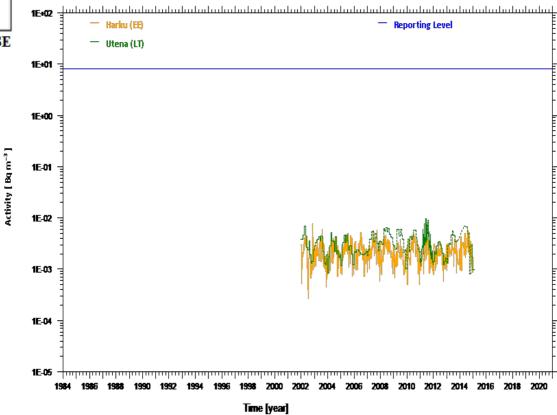
SAMPLE TYPE mixed diet (Bq d⁻¹ p⁻¹) **NUCLIDE CATEGORY** caesium-137 (137Cs)

Country	N	L	1st	2nd	3rd	4th	Annual	Monthly	М
Country	"	-	quarter	quarter	quarter	quarter	average	max	
AT	23	2	< RL	< RL	< RL	< RL	< RL	2.1E-01	8
BE	1	1			< RL		< RL	< RL	9
BG	11	5	2.2E-01	< RL	< RL	< RL	< RL	2.3E-01	4
CY	10	1			< RL		< RL	< RL	7
CZ	4	2			< RL		< RL	< RL	8
DE-N	137	6	< RL	< RL	2.3E-01	2.9E-01	2.2E-01	3.5E-01	10
DE-C	131	8	< RL	< RL	< RL	< RL	< RL	< RL	10
DE-S	105	6	< RL	< RL	< RL	< RL	< RL	2.9E-01	5
DE-E	136	5	< RL	< RL	< RL	< RL	< RL	< RL	8
DE	509	25	< RL	< RL	< RL	< RL	< RL	< RL	10
DK	3	3		< RL			< RL	< RL	6
EE	4	2	< RL	· · · ·		< RL	< RL	< RL	2
ES-N	20	5	< RL	< RL	< RL	< RL	< RL	< RL	8
ES-C	26	7	< RL	< RL	< RL	< RL	< RL	< RL	6
ES-S	16	4	< RL	< RL	< RL	< RL	< RL	< RL	5
ES-E	16	4	< RL	< RL	< RL	< RL	< RL	< RL	5
ES	78	20	< RL	< RL	< RL	< RL	< RL	< RL	8
FI-N	7	1				8.7E-01	8.7E-01	8.7E-01	10
FI-S	14	2				7.2E-01	7.2E-01	7.2E-01	10
FI	21	3				7.7E-01	7.7E-01	7.7E-01	10
FR-NW									
FR-NE									
FR-SW									
FR-SE									
FR									
GB-EN	8	5		< RL	< RL	< RL	< RL	< RL	5
GB-WL	5	2		< RL	< RL		< RL	< RL	6
GB-SC	28	5	< RL	< RL	< RL	< RL	< RL	< RL	3
GB-NI	5	2			< RL	< RL	< RL	< RL	11
GB	46	14	< RL	< RL	< RL	< RL	< RL	< RL	5
GR									
HR-A									
HR-C	5	1				< RL	< RL	< RL	11
HR	5	1				< RL	< RL	< RL	11
HU	16	7	< RL	< RL	< RL		< RL	< RL	3
IE	2	1		< RL		< RL	< RL	< RL	10
IT-N	38	21	< RL	< RL	< RL	< RL	< RL	< RL	12
IT-C	9	6	< RL	< RL	< RL	< RL	< RL	< RL	2
IT-S	8	8	< RL	< RL	2.9E-01	2.9E-01	2.3E-01	6.0E-01	12
IT	55	35	< RL	< RL	< RL	< RL	< RL	< RL	8
LT	12	1	< RL	< RL	< RL	< RL	< RL	< RL	2
LU	12	1	< RL	< RL	2.3E-01	< RL	< RL	5.6E-01	8
LV	5	2	< RL	< RL	< RL	< RL	< RL	< RL	1
MT	6	5		< RL	< RL		< RL	< RL	4
NL							Δ		
PL-N	1	1	3.3E-01	3.3E-01	3.3E-01	3.3E-01	3.3E-01	3.3E-01	12
PL-S	1	1	3.3E-01	3.3E-01	3.3E-01	3.3E-01	3.3E-01	3.3E-01	12
PL	2	2	3.3E-01	3.3E-01	3.3E-01	3.3E-01	3.3E-01	3.3E-01	12
PT	12	1	< RL	< RL	< RL	< RL	< RL	3.2E-01	11
RO-N									
RO-S	16	7	< RL	< RL	< RL	< RL	< RL	< RL	2
RO	16	7	< RL	< RL	< RL	< RL	< RL	< RL	2
SE-N	3	1		< RL		2.5E+00	1.4E+00	3.2E+00	11
SE-S	5	2	8.0E-01	< RL		< RL	3.7E-01	8.0E-01	1
SE	8	3	8.0E-01	< RL		2.1E+00	1.0E+00	3.0E+00	11
SI	5	5	2.3E-01				2.3E-01	2.3E-01	3
SK	12	3	< RL	< RL	< RL	< RL	< RL	2.0E-01	10


RL: reporting level for $^{197}\!Cs$ In mixed diet, i.e. 2.0 E-01 BQ/D.P (see Appendix B) Δ : only constraint (<) values above the reporting level were reported

N: Number of measurements considered in calculating the annual concentration. L: Number of sampling locations considered in calculating the annual concentration.

Monthly max: Maximum monthly average in the year.


M: Month during which the maximum occurred.

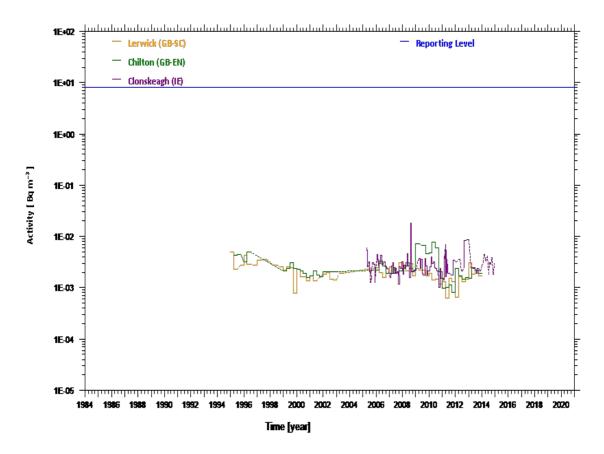


Fig. A7Sampling locations for ⁷Be and ¹³⁷Cs in airborne particulates considered in Figures A8 – A35

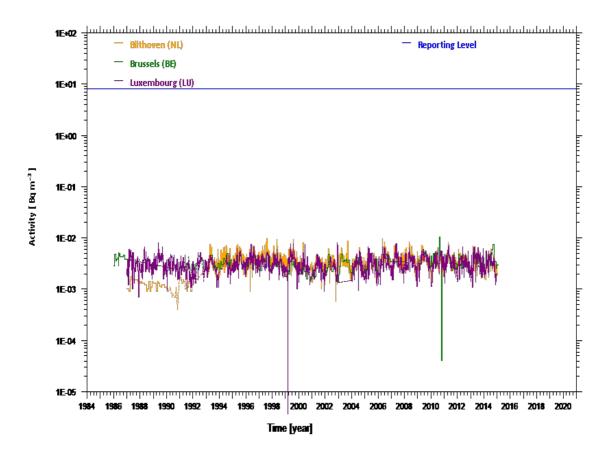
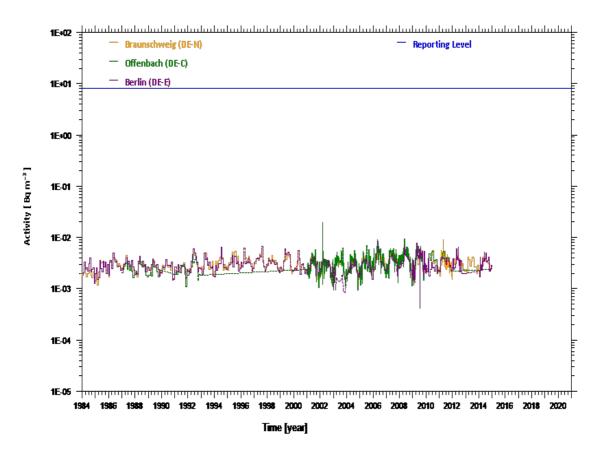
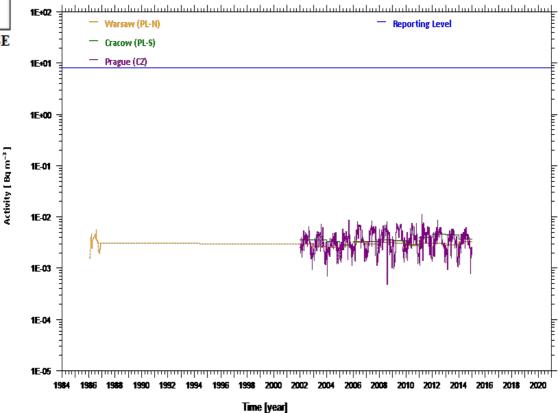


Fig. A8Activity trends for ⁷Be in airborne particulates (Harku and Utena)


Fig. A9Activity trends for ⁷Be in airborne particulates (Lerwick, Chilton and Clonskeagh)


Fig. A10Activity trends for ⁷Be in airborne particulates (Bilthoven, Brussels and Luxembourg)

* The 7Be results for Bilthoven between 1987 and 1992 are underestimates due to a different sampling procedure and sample treatment

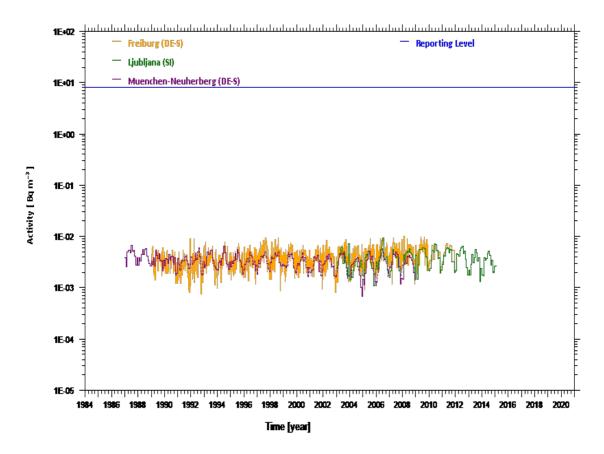


Fig. A11Activity trends for ⁷Be in airborne particulates (Braunschweig, Offenbach and Berlin)

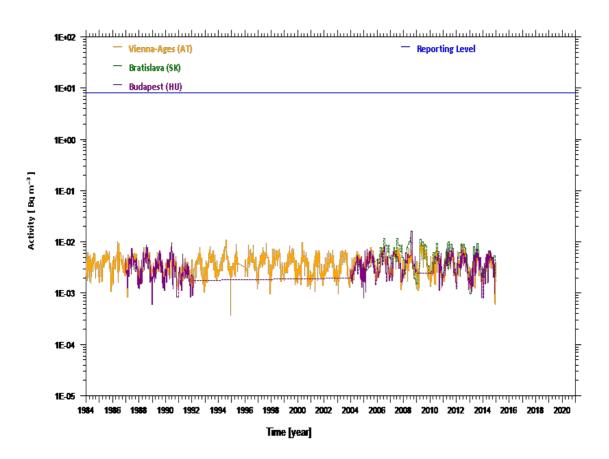


Fig. A12Activity trends for ⁷Be in airborne particulates (Warsaw, Cracow and Prague)

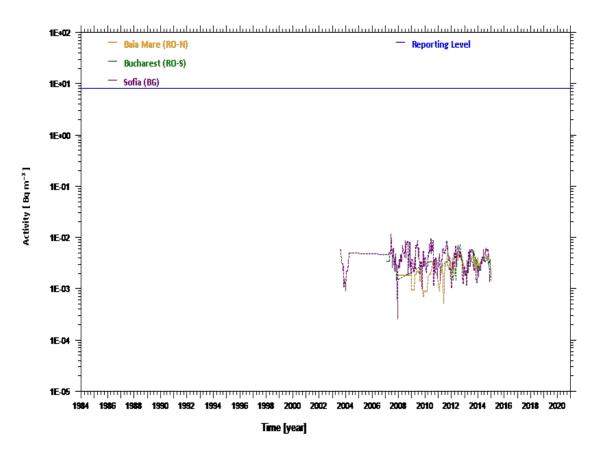


Fig. A13Activity trends for ⁷Be in airborne particulates (Freiburg, Ljubljana and Muenchen-Neuherberg)

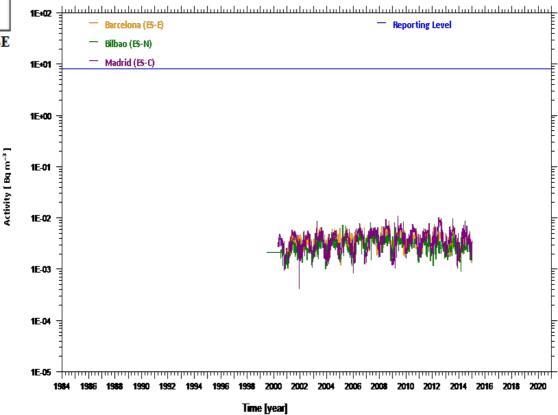


Fig. A14Activity trends for ⁷Be in airborne particulates (Vienna-Ages, Bratislava and Budapest)

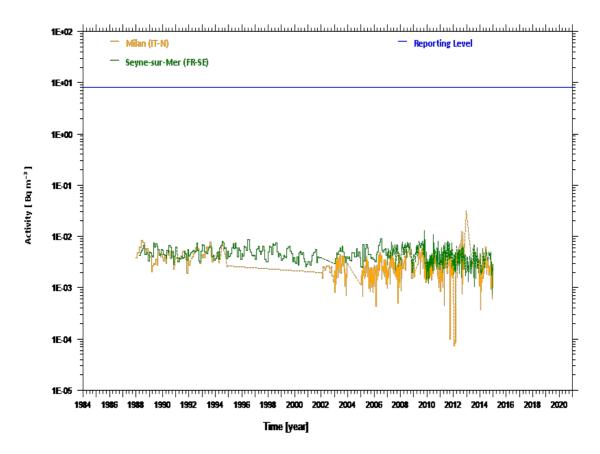


Fig. A15Activity trends for ⁷Be in airborne particulates (Baia Mare, Bucharest and Sofia)

Fig. A16Activity trends for ⁷Be in airborne particulates (Barcelona, Bilbao and Madrid)

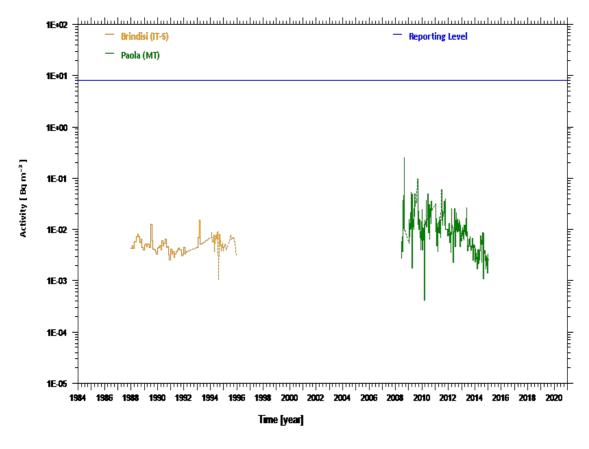


Fig. A17Activity trends for ⁷Be in airborne particulates (Milan and Seyne-sur-Mer)

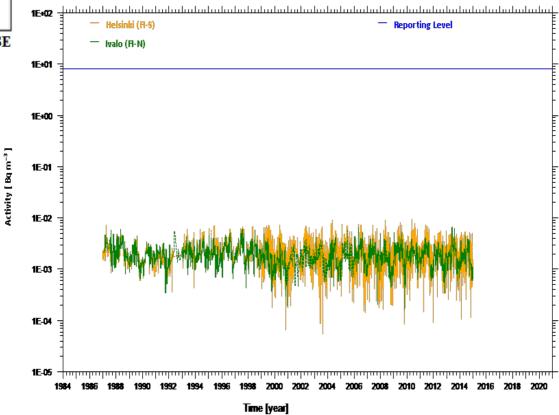


Fig. A18Activity trends for ⁷Be in airborne particulates (La Laguna-Tenerife, Sacavém and Sevilla)

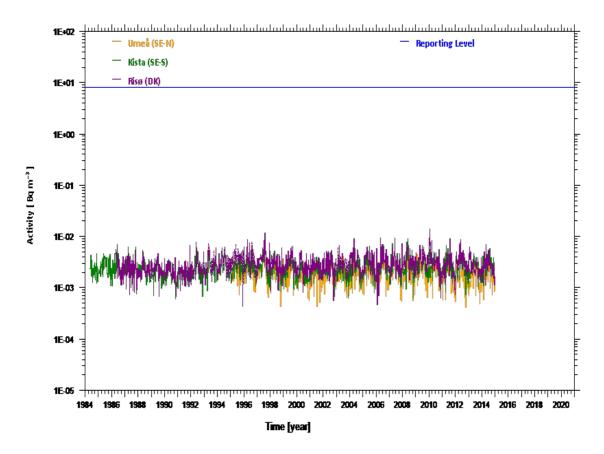


Fig. A19Activity trends for ⁷Be in airborne particulates (Brindisi and Paola)

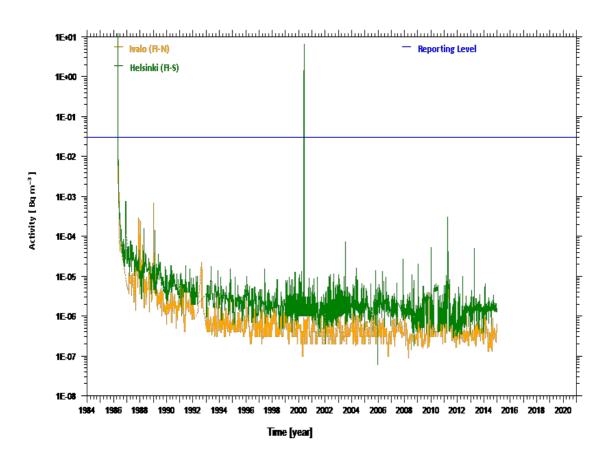


Fig. A20 Activity trends for ⁷Be in airborne particulates (Helsinki and Ivalo)

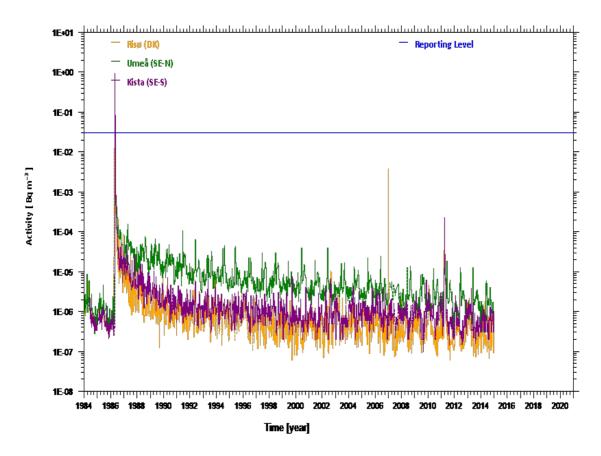


Fig. A21Activity trends for ⁷Be in airborne particulates (Umeå, Kista and Risø)

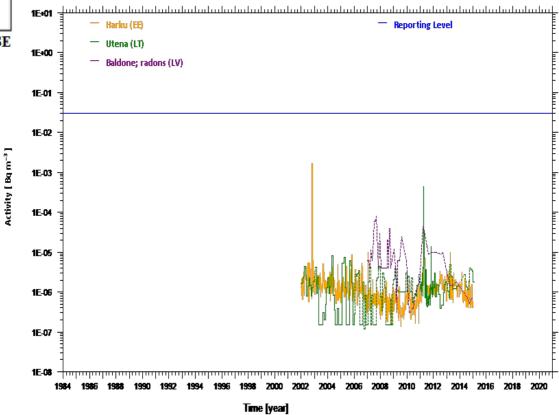


Fig. A22Activity trends for ¹³⁷Cs in airborne particulates (Ivalo and Helsinki)

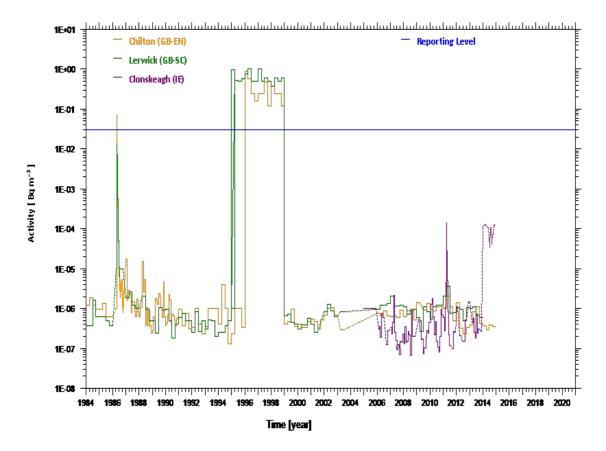


Fig. A23Activity trends for ¹³⁷Cs in airborne particulates (Risø, Umeå and Kista)

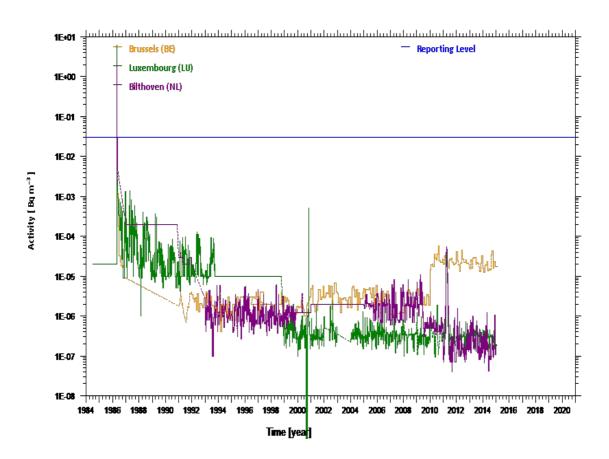


Fig. A24Activity trends for ¹³⁷Cs in airborne particulates (Harku, Utena and Baldone; radons)

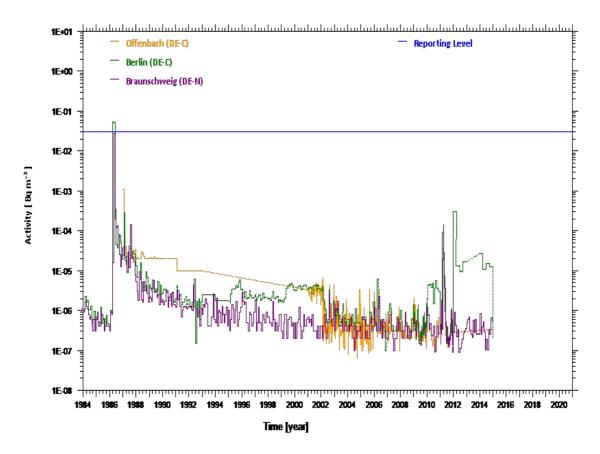


Fig. A25Activity trends for ¹³⁷Cs in airborne particulates (Chilton, Lerwick and Clonskeagh)

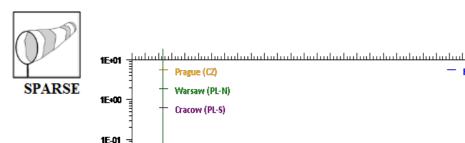


Fig. A26Activity trends for ¹³⁷Cs in airborne particulates (Brussels, Luxembourg and Bilthoven)

Fig. A27Activity trends for ¹³⁷Cs in airborne particulates (Offenbach, Berlin and Braunschweig)

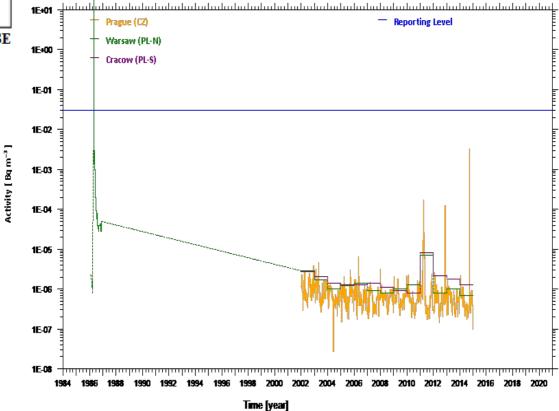


Fig. A28 Activity trends for ¹³⁷Cs in airborne particulates (Prague, Warsaw and Cracow)

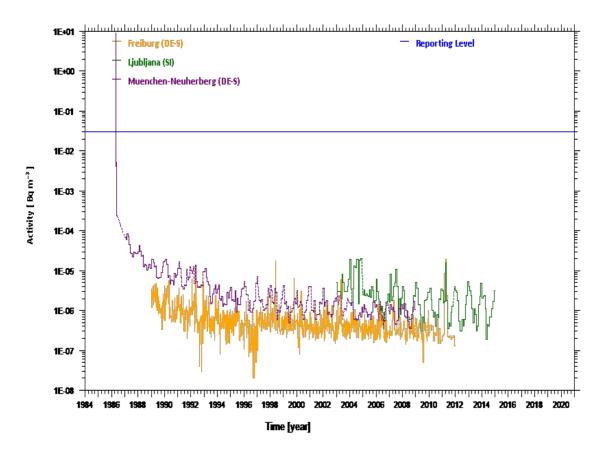
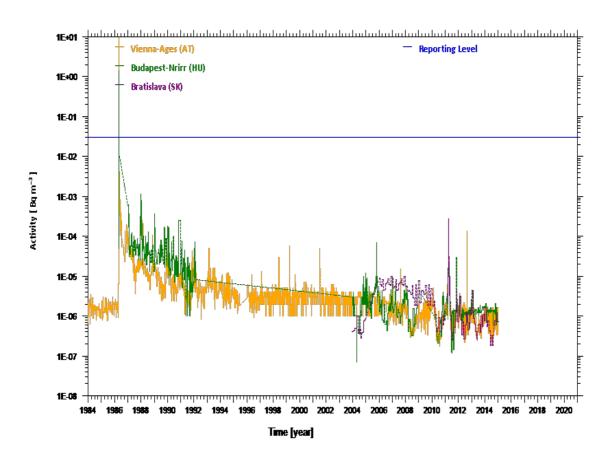
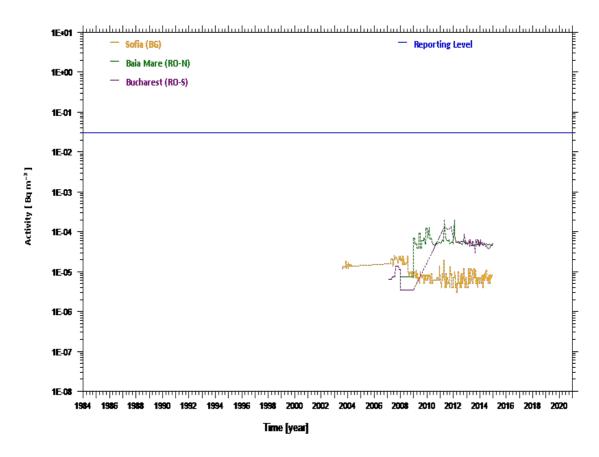




Fig. A29 Activity trends for ¹³⁷Cs in airborne particulates (Freiburg, Ljubljana and Muenchen-Neuherberg)

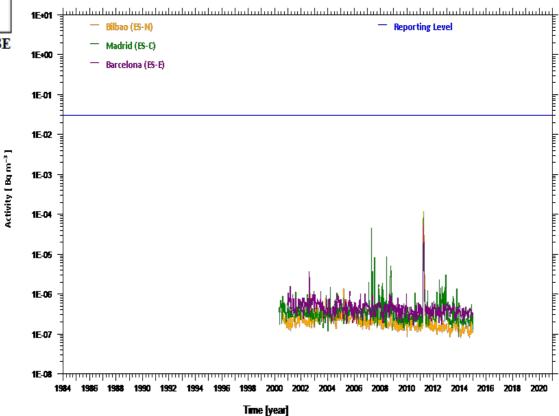


Fig. A30Activity trends for ¹³⁷Cs in airborne particulates (Vienna-Ages, Budapest-Nrirr and Bratislava)

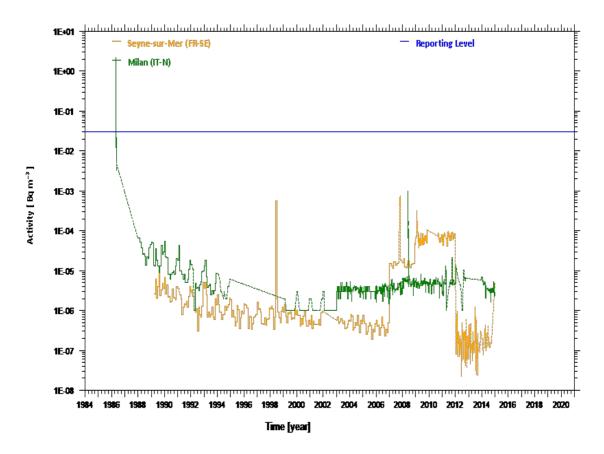


Fig. A31Activity trends for ¹³⁷Cs in airborne particulates (Sofia, Baia Mare and Bucharest)

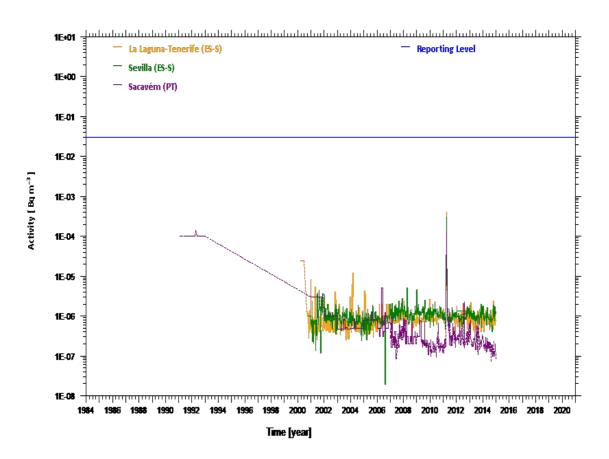


Fig. A32Activity trends for ¹³⁷Cs in airborne particulates (Bilbao, Madrid and Barcelona)

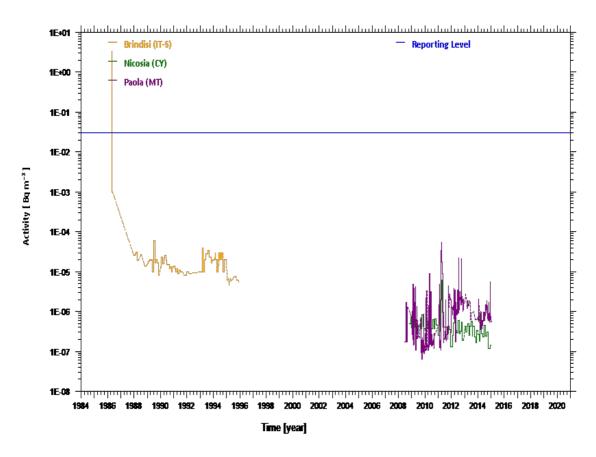


Fig. A33Activity trends for ¹³⁷Cs in airborne particulates (Seyne-sur-Mer and Milan)

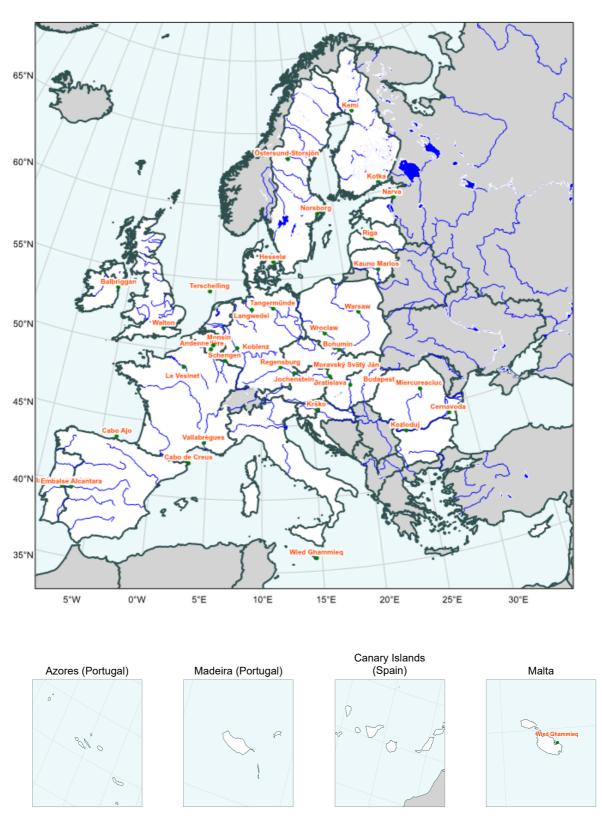
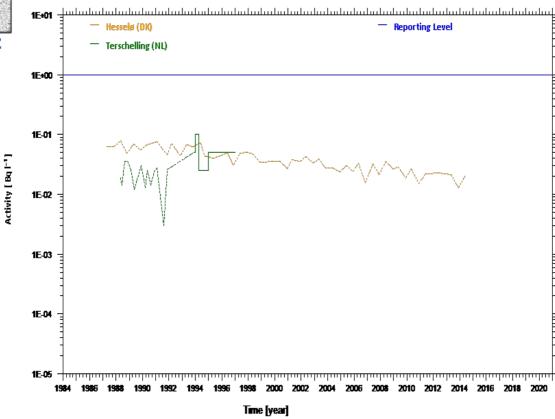


Fig. A34Activity trends for ¹³⁷Cs in airborne particulates (La Laguna-Tenerife, Sevilla and Sacavém)


Fig. A35Activity trends for ¹³⁷Cs in airborne particulates (Brindisi, Nicosia and Paola)

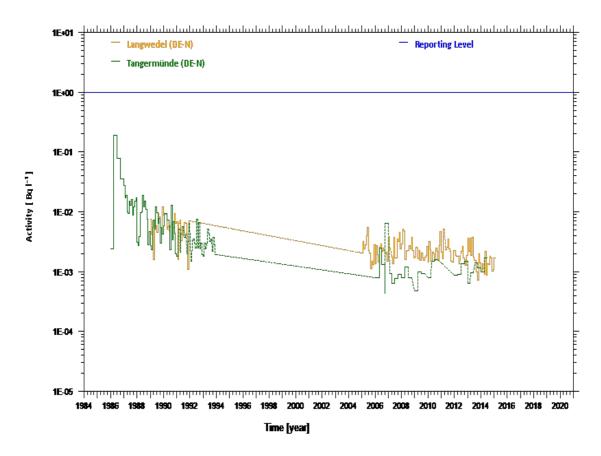


Fig. S11Sampling locations for ¹³⁷Cs in surface water considered in Figures S12 – S26

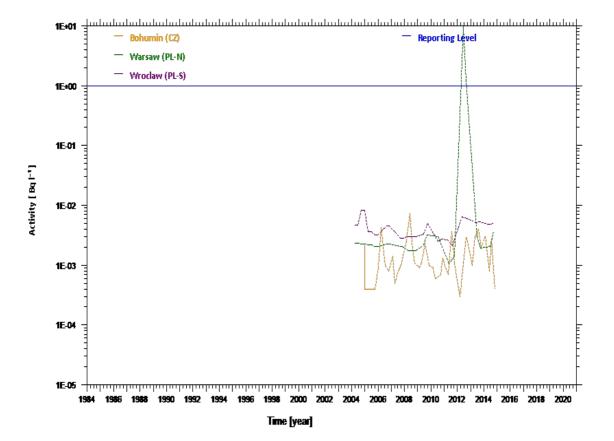


Fig. S12Activity trends for ¹³⁷Cs in surface water (Hesselø and Terschelling)

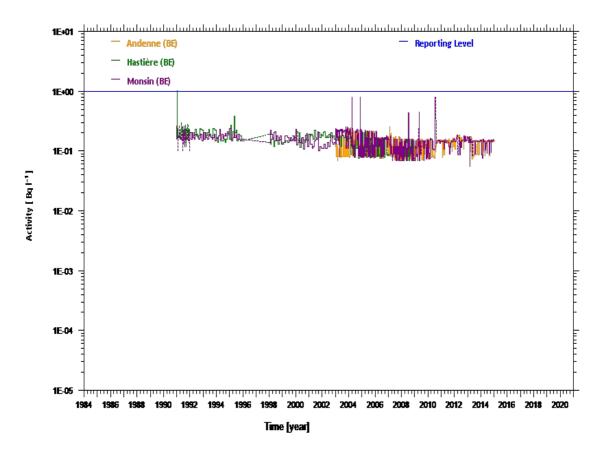


Fig. S13Activity trends for ¹³⁷Cs in surface water (Langwedel and Tangermünde)

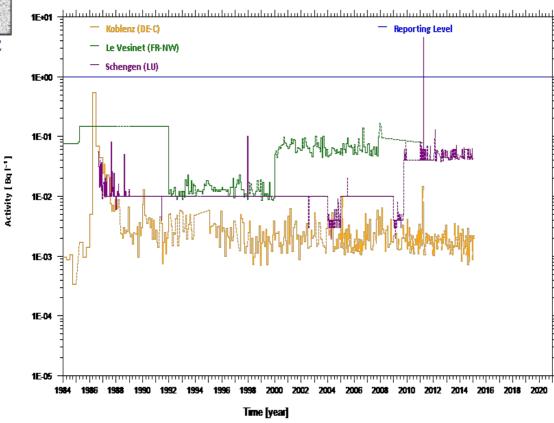


Fig. S14Activity trends for ¹³⁷Cs in surface water (Bohumin, Warsaw and Wroclaw)

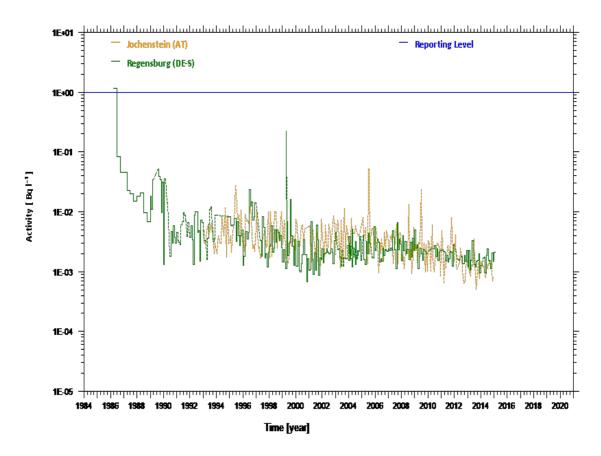


Fig. S15Activity trends for ¹³⁷Cs in surface water (Andenne, Hastière and Monsin)

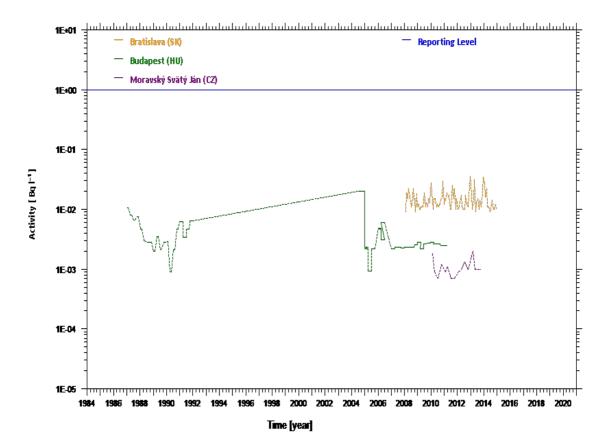


Fig. S16Activity trends for ¹³⁷Cs in surface water (Koblenz, Le Vesinet and Schengen)

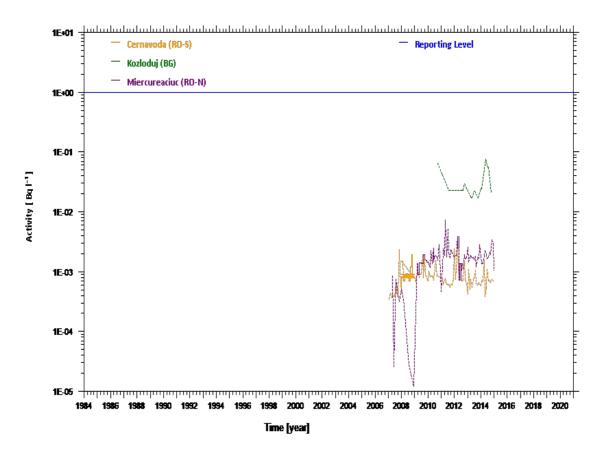


Fig. S17Activity trends for ¹³⁷Cs in surface water (Jochenstein and Regensburg)

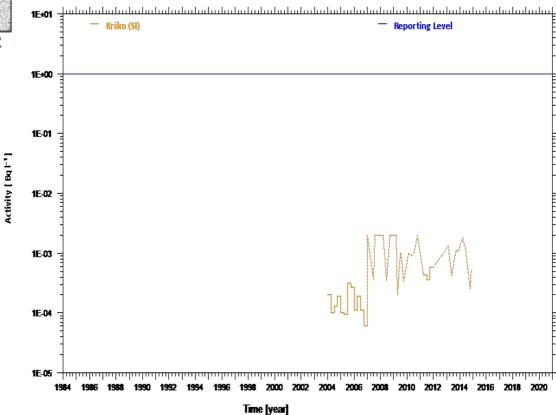


Fig. S18Activity trends for ¹³⁷Cs in surface water (Bratislava, Budapest and Moravský Svätý Ján)

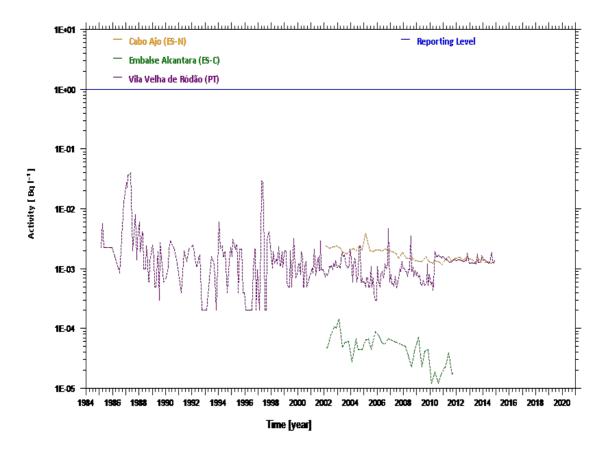


Fig. S19Activity trends for ¹³⁷Cs in surface water (Cernavoda, Kozloduj and Miercureaciuc)

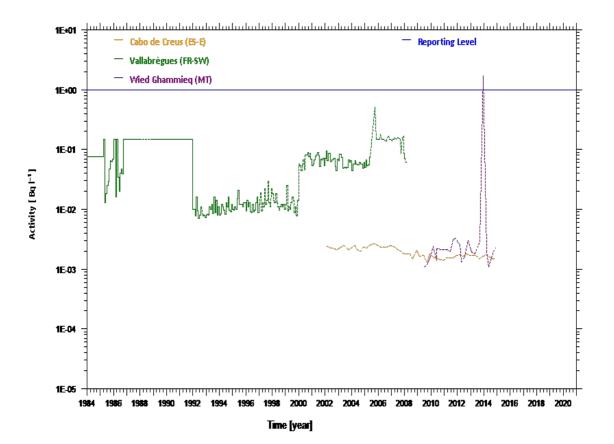


Fig. S20Activity trends for ¹³⁷Cs in surface water (Krško)

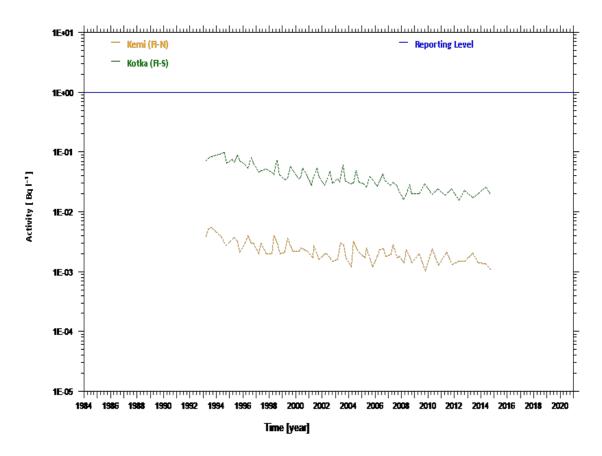


Fig. S21Activity trends for ¹³⁷Cs in surface water (Cabo Ajo, Embalse Alcantara and Vila Velha de Ródão)

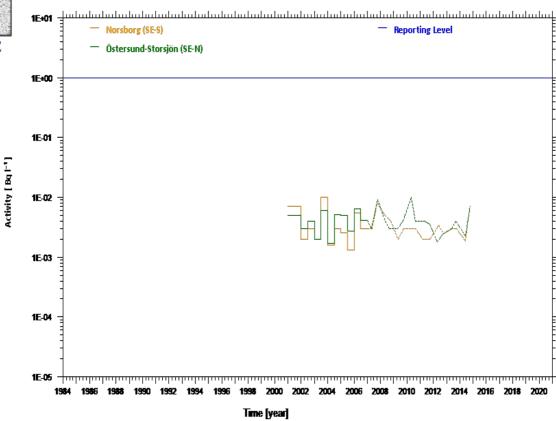


Fig. S22Activity trends for ¹³⁷Cs in surface water (Cabo de Creus, Vallabrègues and Wied Ghammieq)

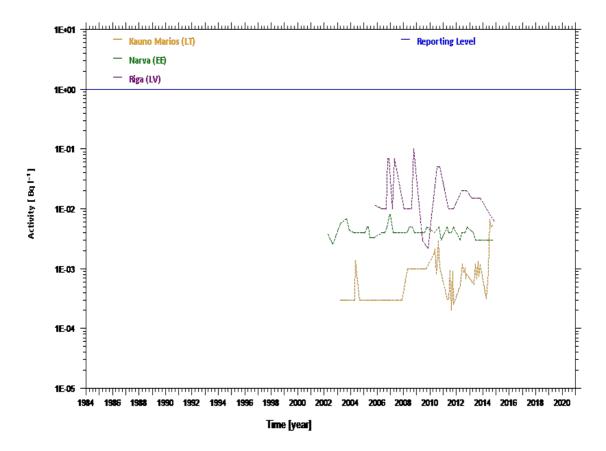


Fig. S23Activity trends for ¹³⁷Cs in surface water (Kemi and Kotka)

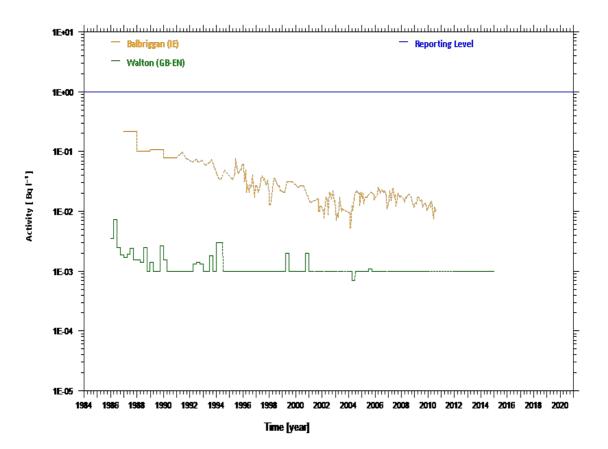
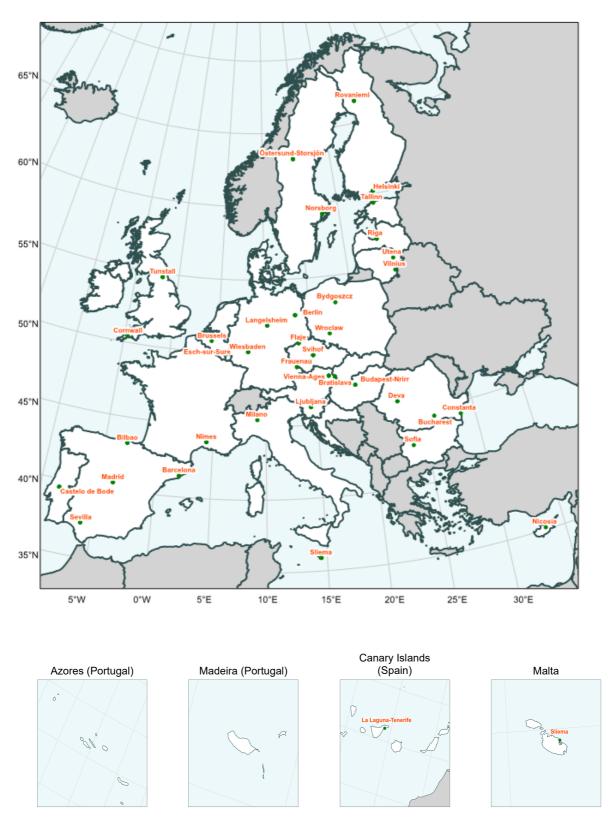


Fig. S24Activity trends for ¹³⁷Cs in surface water (Norsborg and Östersund-Storsjön)


Fig. S25Activity trends for ¹³⁷Cs in surface water (Kauno Marios, Narva and Riga)

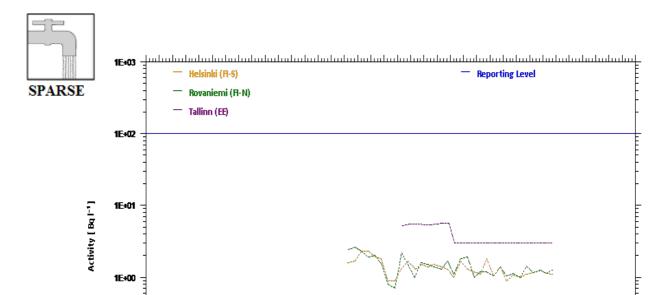


Fig. S26Activity trends for ¹³⁷Cs in surface water (Balbriggan and Walton)

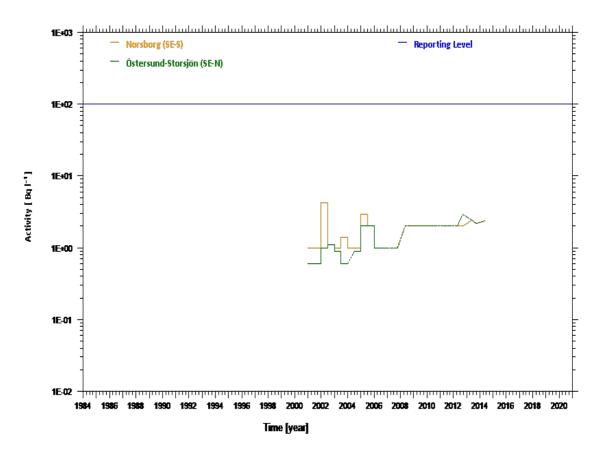
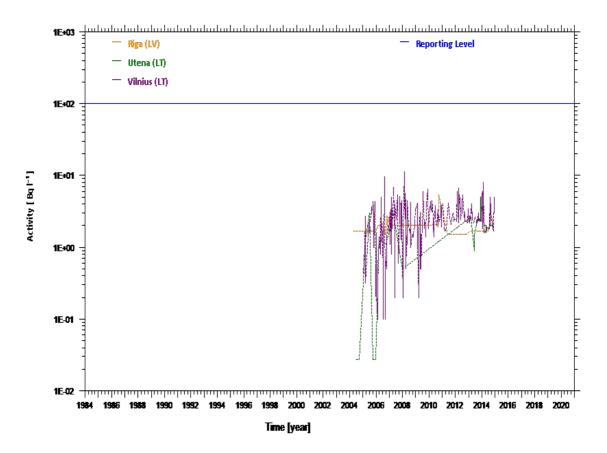


Fig. W10Sampling locations for ³H, ⁹⁰Sr and ¹³⁷Cs in drinking water considered in Figures W11 – W45

Fig. W11Activity trends for ³H in drinking water (Helsinki, Rovaniemi and Tallinn)


1E-01

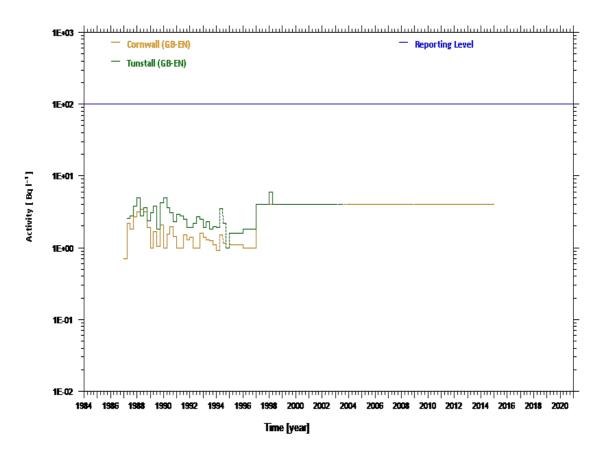
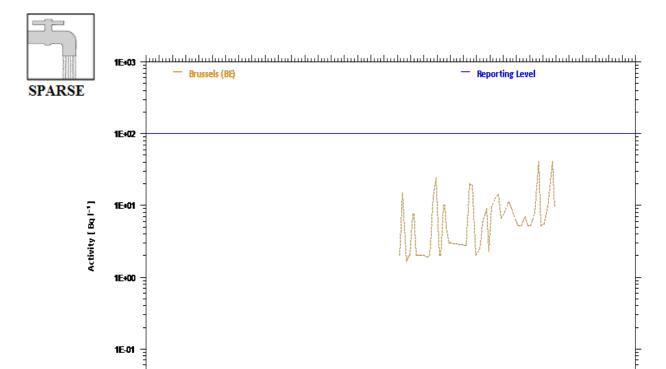

Time [year]

Fig. W12Activity trends for ³H in drinking water (Norsborg and Östersund-Storsjön)



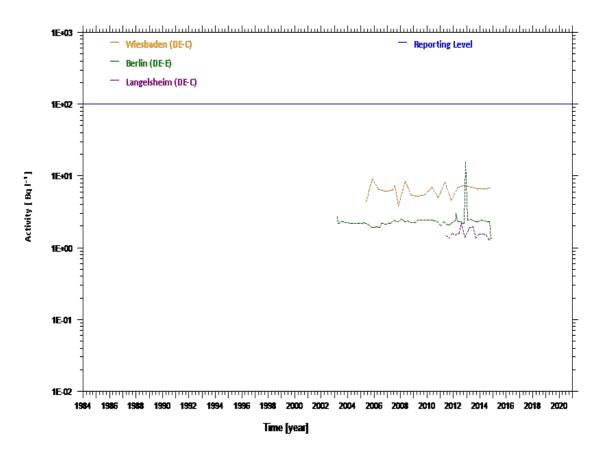
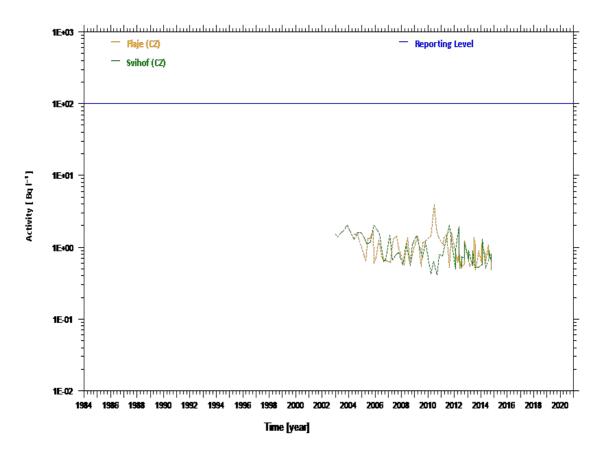

Fig. W13Activity trends for ³H in drinking water (Riga, Utena and Vilnius)

Fig. W14Activity trends for ³H in drinking water (Cornwall and Tunstall)

Fig. W15Activity trends for ³H in drinking water (Brussels)



Time [year]

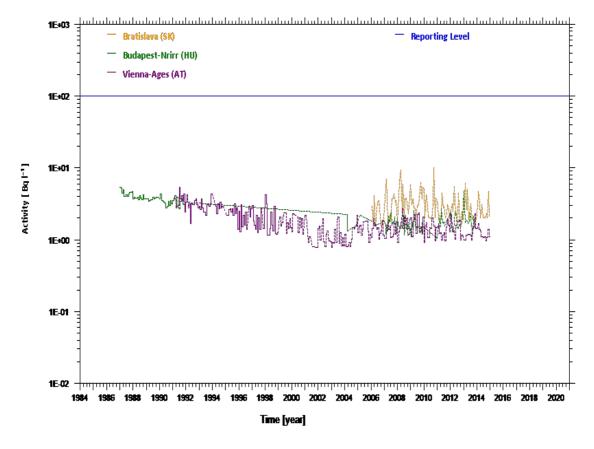
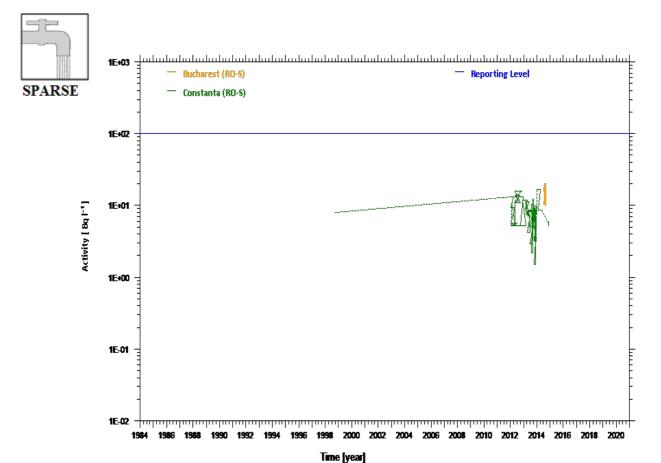

1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020

Fig. W16Activity trends for ³H in drinking water (Wiesbaden, Berlin and Langelsheim)



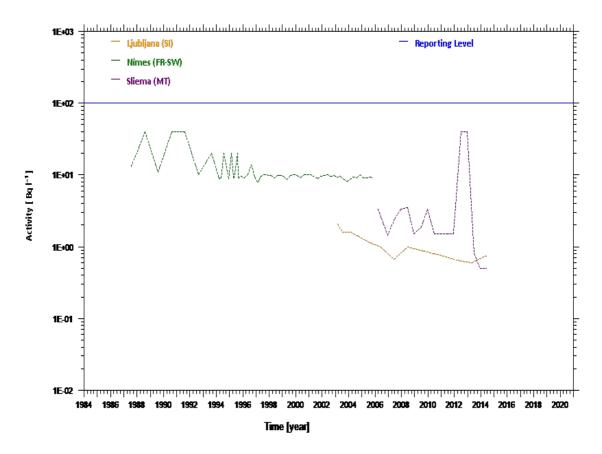

Fig. W17Activity trends for ³H in drinking water (Flaje and Svihof)

Fig. W18Activity trends for ³H in drinking water (Bratislava, Budapest-Nrirr and Vienna-Ages)

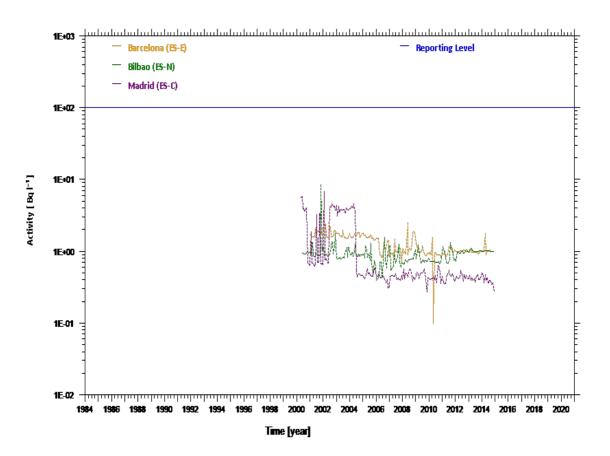


Fig. W19Activity trends for ³H in drinking water (Bucharest and Constanta)

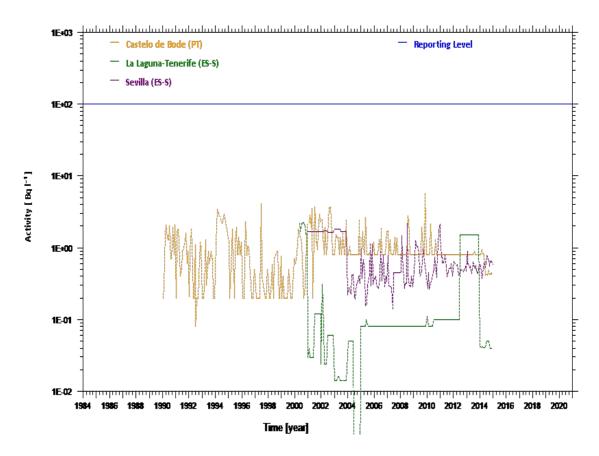


Fig. W20Activity trends for ³H in drinking water (Ljubljana, Nîmes and Sliema)

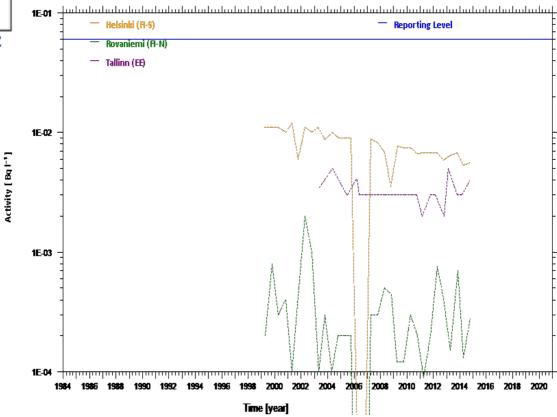


Fig. W21Activity trends for ³H in drinking water (Barcelona, Bilbao and Madrid)

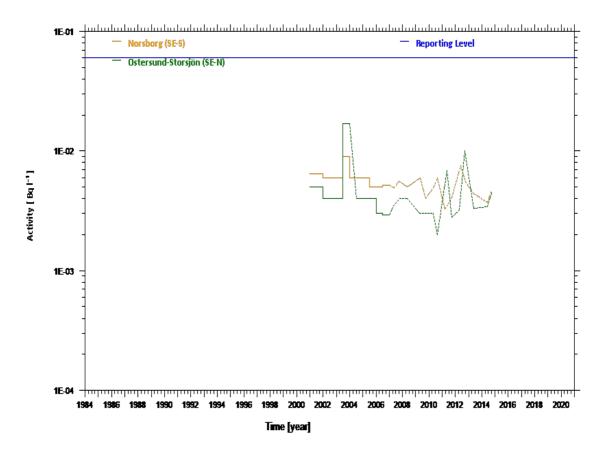


Fig. W22Activity trends for ³H in drinking water (Castelo de Bode, La Laguna-Tenerife and Sevilla)

Fig. W23Activity trends for ⁹⁰Sr in drinking water (Helsinki, Rovaniemi and Tallinn)

Fig. W24Activity trends for ⁹⁰Sr in drinking water (Norsborg and Östersund-Storsjön)

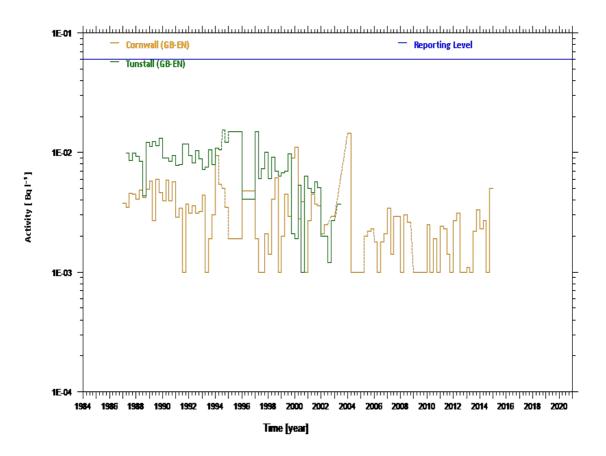
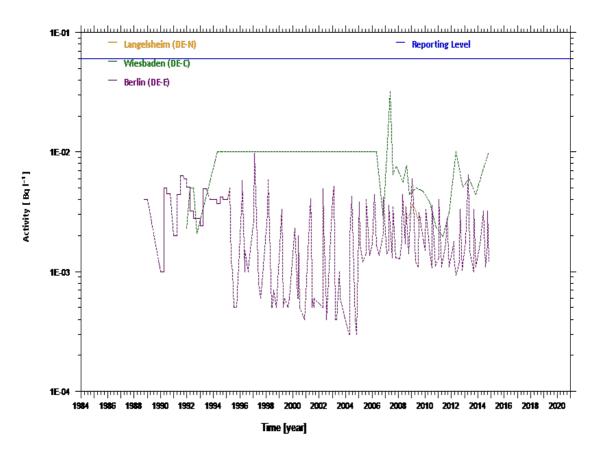
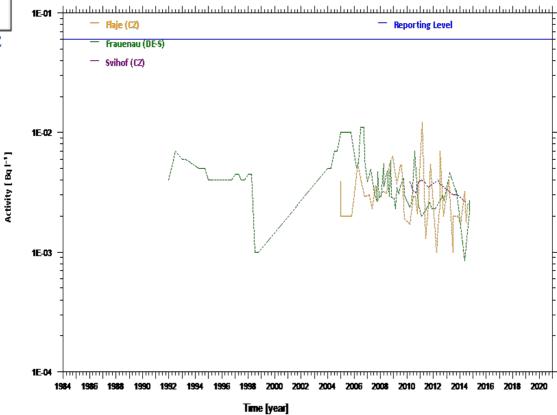




Fig. W25
Activity trends for ⁹⁰Sr in drinking water (Cornwall and Tunstall)

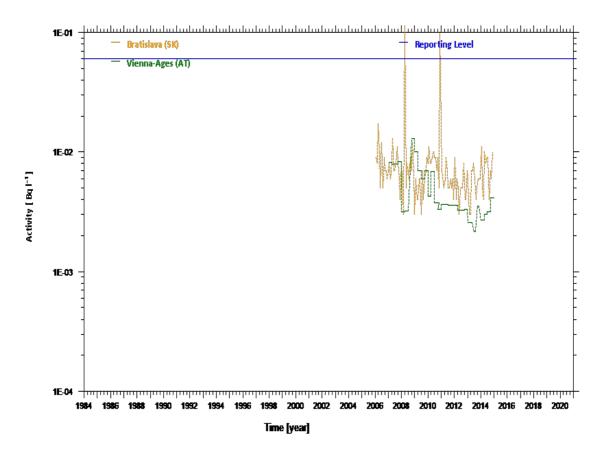


Fig. W26Activity trends for ⁹⁰Sr in drinking water (Langelsheim, Wiesbaden and Berlin)

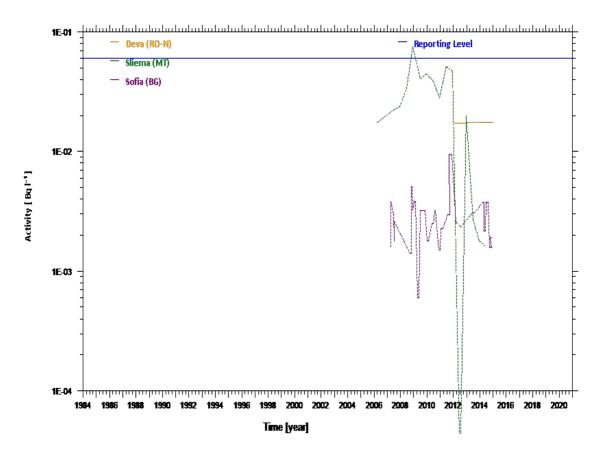


Fig. W27Activity trends for ⁹⁰Sr in drinking water (Flaje, Frauenau and Svihof)

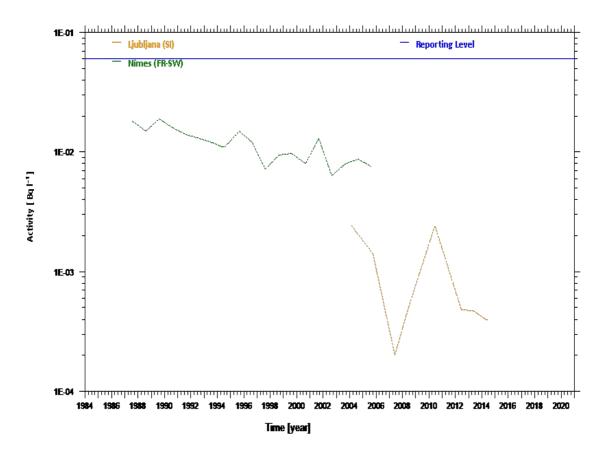


Fig. W28Activity trends for ⁹⁰Sr in drinking water (Bratislava and Vienna-Ages)

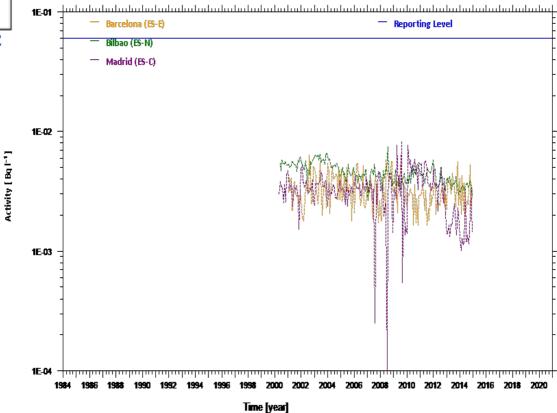


Fig. W29Activity trends for ⁹⁰Sr in drinking water (Deva, Sliema and Sofia)

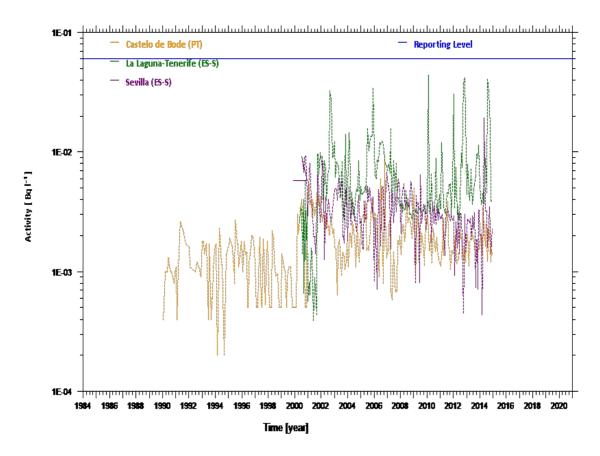


Fig. W30Activity trends for ⁹⁰Sr in drinking water (Ljubljana and Nîmes)

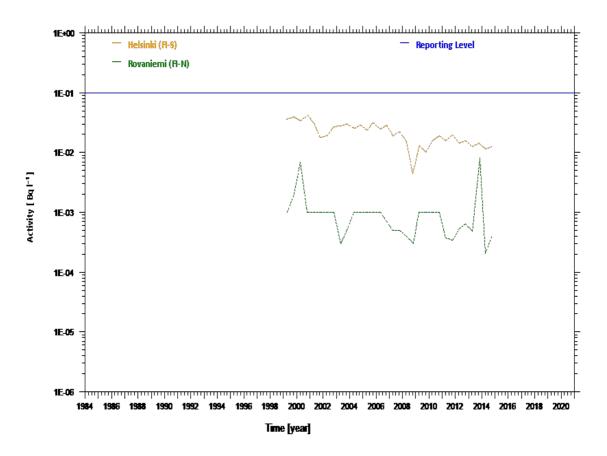


Fig. W31Activity trends for ⁹⁰Sr in drinking water (Barcelona, Bilbao and Madrid)

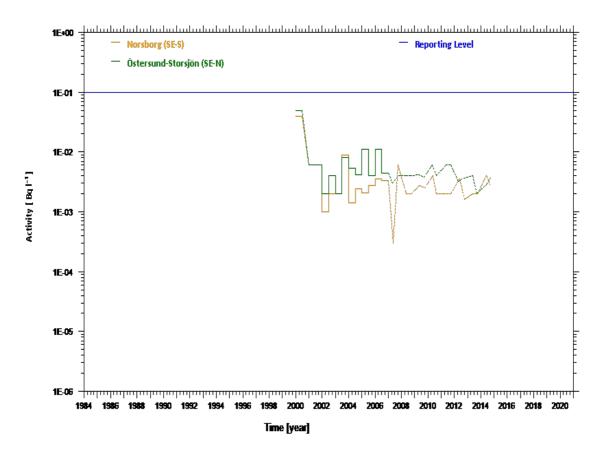


Fig. W32Activity trends for ⁹⁰Sr in drinking water (Castelo de Bode, La Laguna-Tenerife and Sevilla)

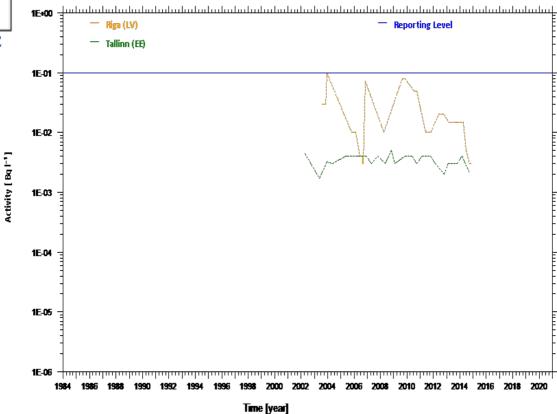


Fig. W33Activity trends for ¹³⁷Cs in drinking water (Helsinki and Rovaniemi)

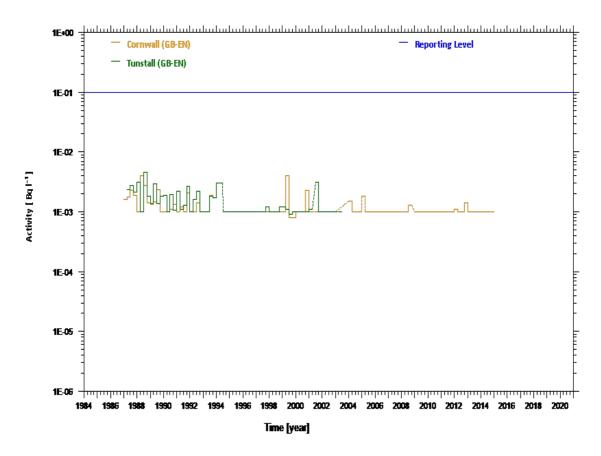


Fig. W34Activity trends for ¹³⁷Cs in drinking water (Norsborg and Östersund-Storsjön)

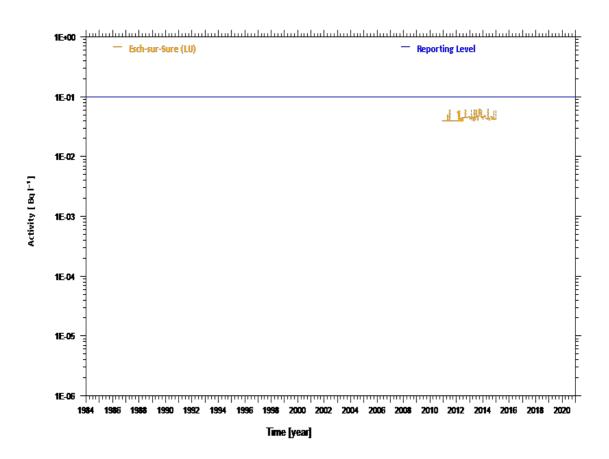


Fig. W35Activity trends for ¹³⁷Cs in drinking water (Riga and Tallinn)

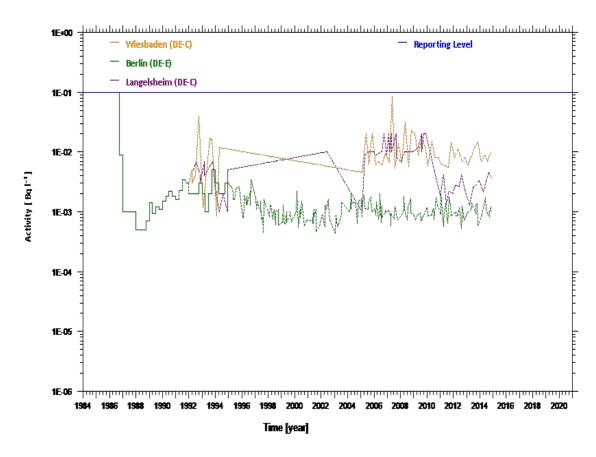


Fig. W36Activity trends for ¹³⁷Cs in drinking water (Cornwall and Tunstall)

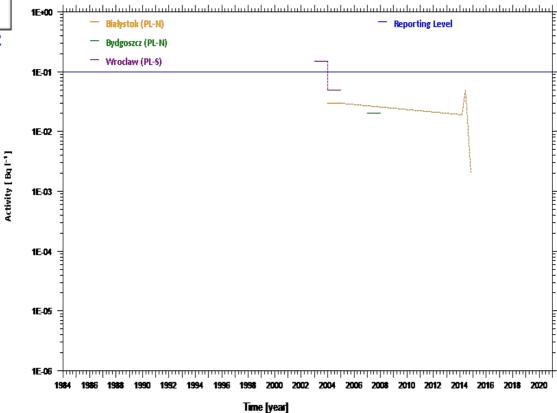


Fig. W37Activity trends for ¹³⁷Cs in drinking water (Esch-sur-Sure)

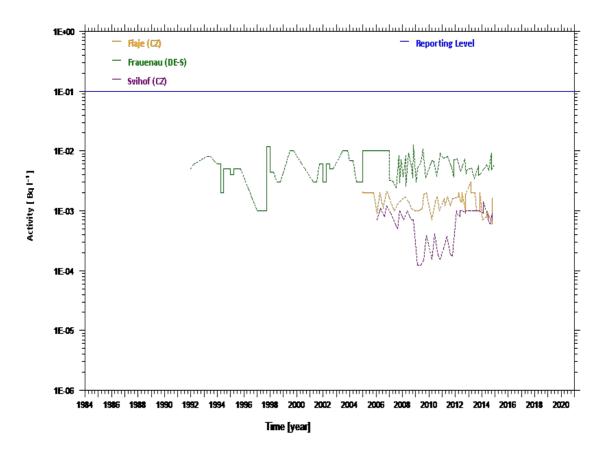


Fig. W38Activity trends for ¹³⁷Cs in drinking water (Wiesbaden, Berlin and Langelsheim)

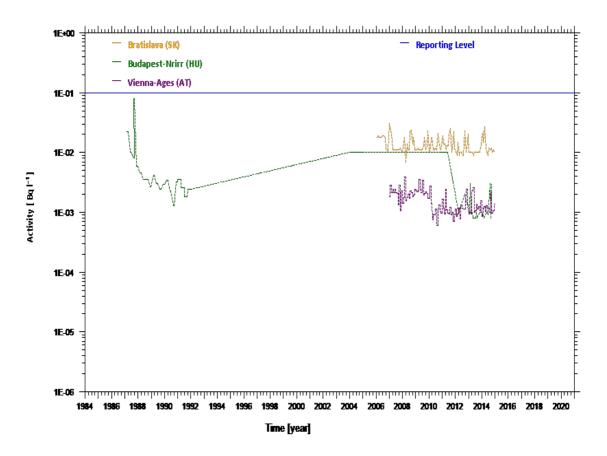


Fig. W39Activity trends for ¹³⁷Cs in drinking water (Białystok, Bydgoszcz and Wroclaw)

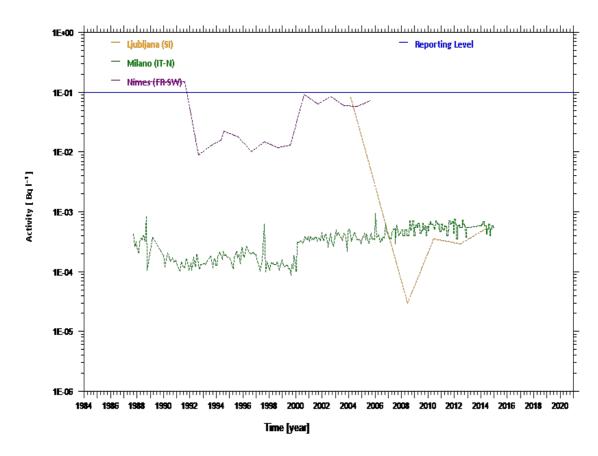


Fig. W40Activity trends for ¹³⁷Cs in drinking water (Flaje, Frauenau and Svihof)

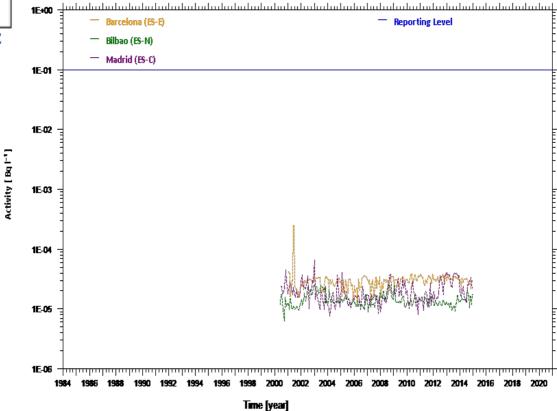


Fig. W41Activity trends for ¹³⁷Cs in drinking water (Bratislava, Budapest-Nrirr and Vienna-Ages)



Fig. W42Activity trends for ¹³⁷Cs in drinking water (Ljubljana, Milano and Nîmes)

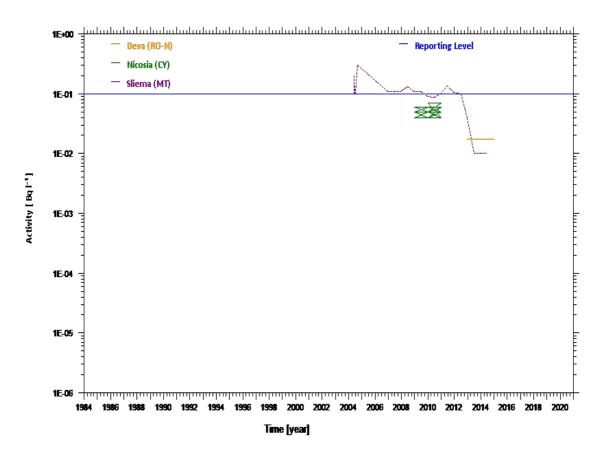


Fig. W43Activity trends for ¹³⁷Cs in drinking water (Barcelona, Bilbao and Madrid)

Fig. W44Activity trends for ¹³⁷Cs in drinking water (Castelo de Bode, La Laguna-Tenerife and Sevilla)

Fig. W45Activity trends for ¹³⁷Cs in drinking water (Deva, Nicosia and Sliema)

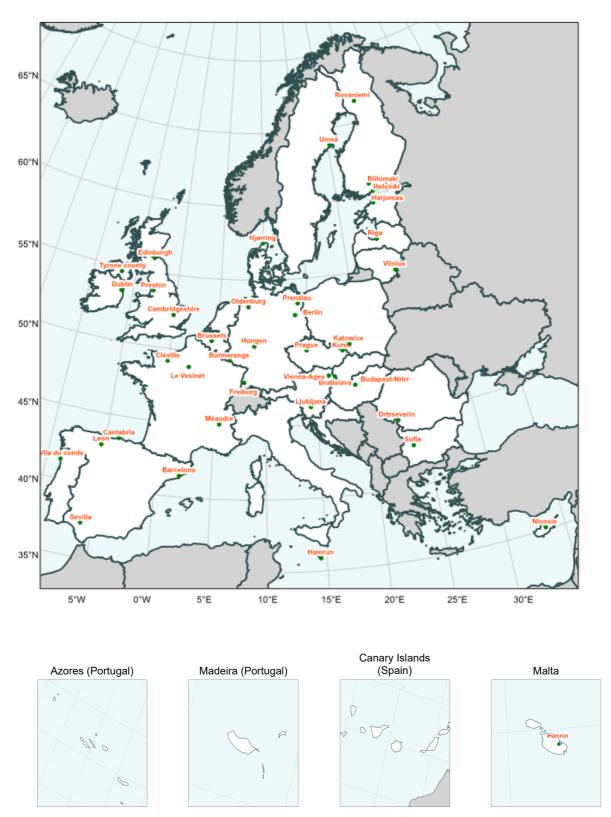
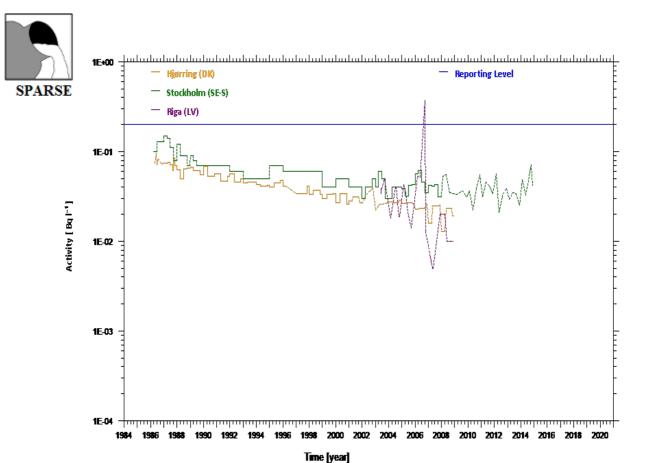
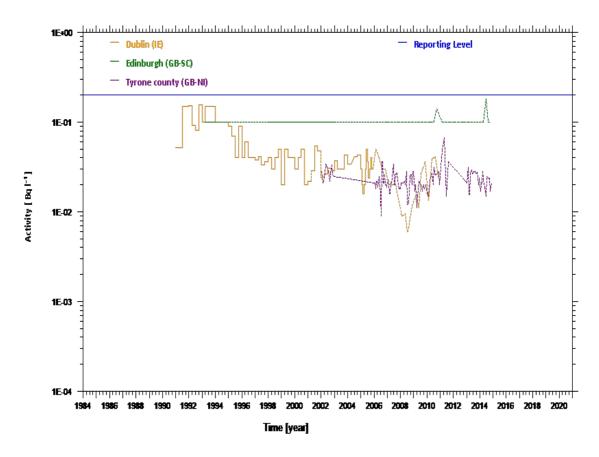




Fig. M7 Sampling locations for 90 Sr and 137 Cs in milk considered in Figures M8 – M37

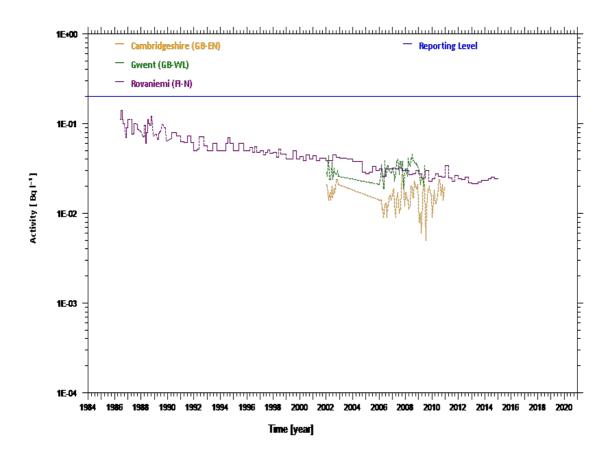


Fig. M8Activity trends for ⁹⁰Sr in milk (Hjørring, Stockholm and Riga)

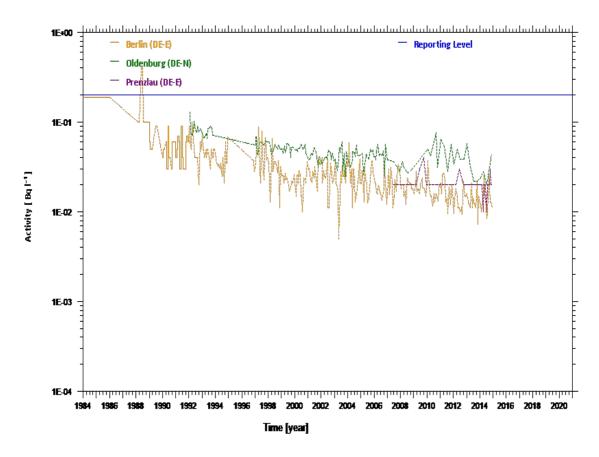
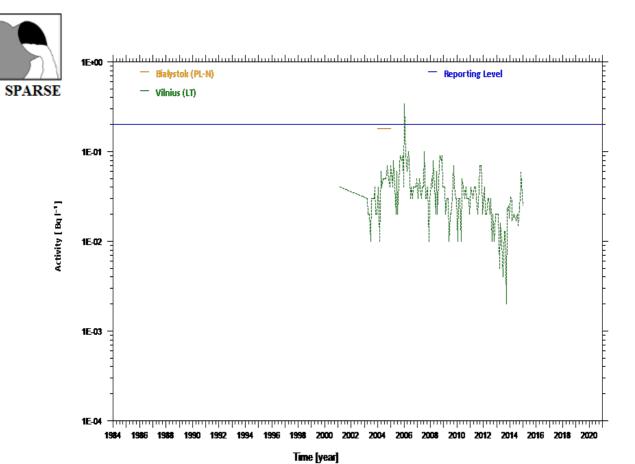


Fig. M9Activity trends for ⁹⁰Sr in milk (Dublin, Edinburgh and Tyrone county)



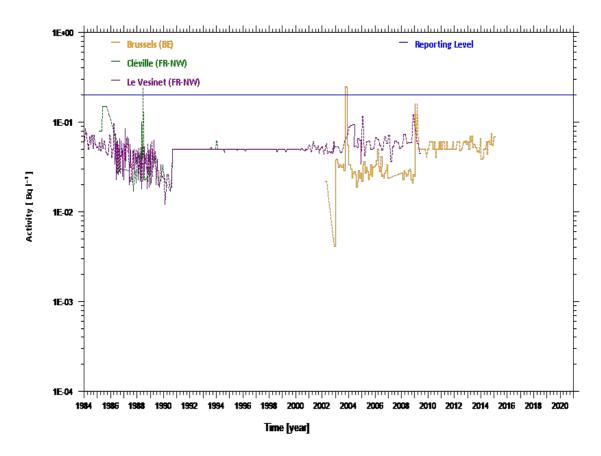

Fig. M10Activity trends for ⁹⁰Sr in milk (Cambridgeshire, Gwent and Rovaniemi)

Fig. M11Activity trends for ⁹⁰Sr in milk (Berlin, Oldenburg and Prenzlau)

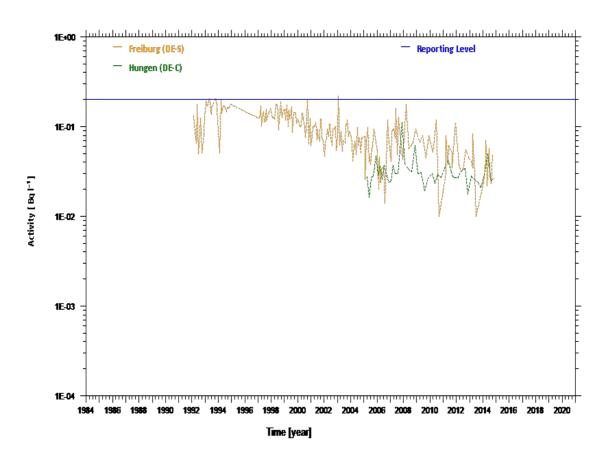


Fig. M12Activity trends for ⁹⁰Sr in milk (Białystok and Vilnius)

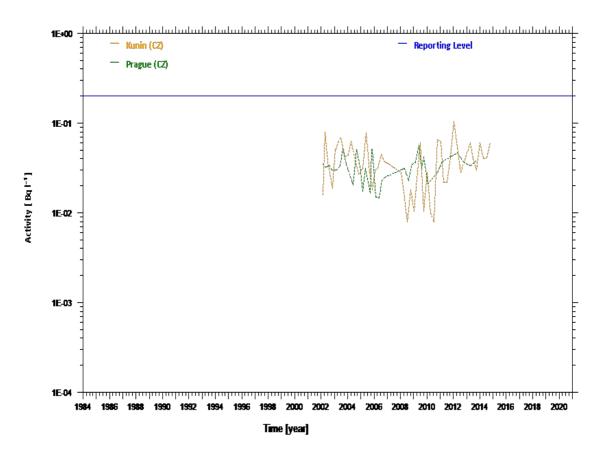


Fig. M13Activity trends for ⁹⁰Sr in milk (Brussels, Cléville and Le Vesinet)

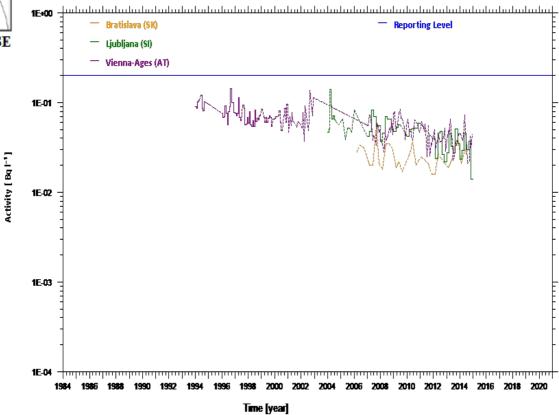


Fig. M14Activity trends for ⁹⁰Sr in milk (Freiburg and Hungen)

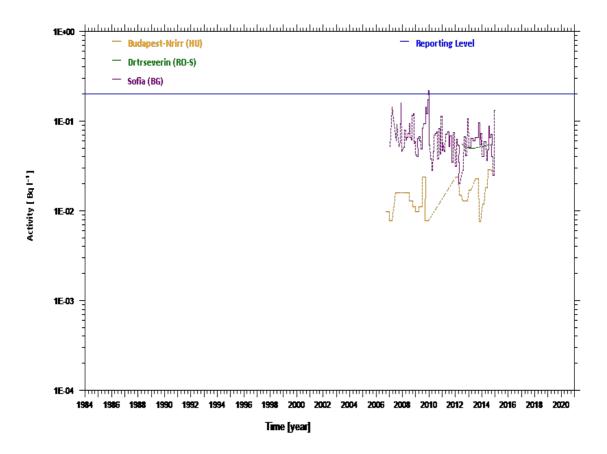


Fig. M15Activity trends for ⁹⁰Sr in milk (Kunin and Prague)

Fig. M16Activity trends for ⁹⁰Sr in milk (Bratislava, Ljubljana and Vienna-Ages)

Fig. M17Activity trends for ⁹⁰Sr in milk (Budapest-Nrirr, Drtrseverin and Sofia)

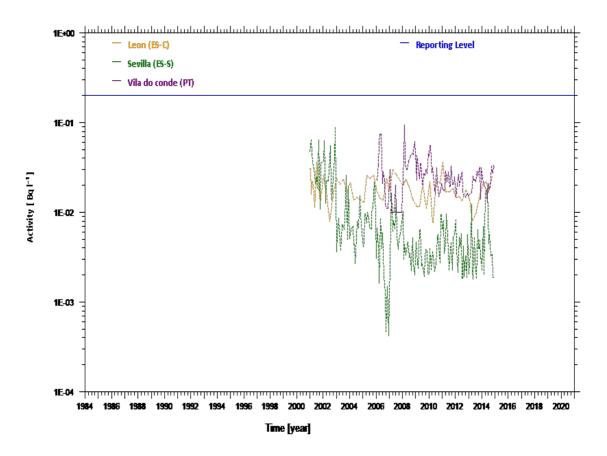
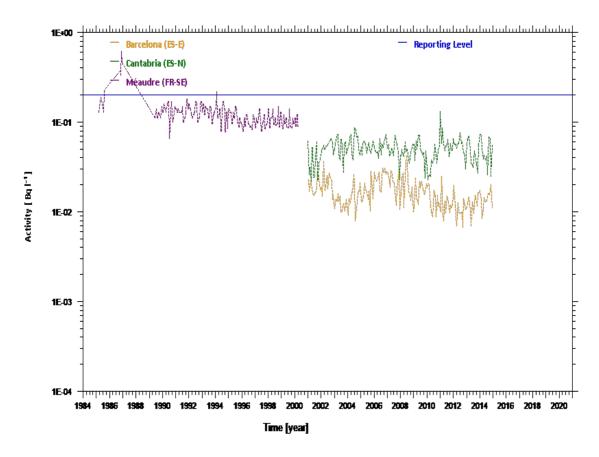



Fig. M18
Activity trends for ⁹⁰Sr in milk (Leon, Sevilla and Vila do conde)

Fig. M19Activity trends for ⁹⁰Sr in milk (Barcelona, Cantabria and Méaudre)

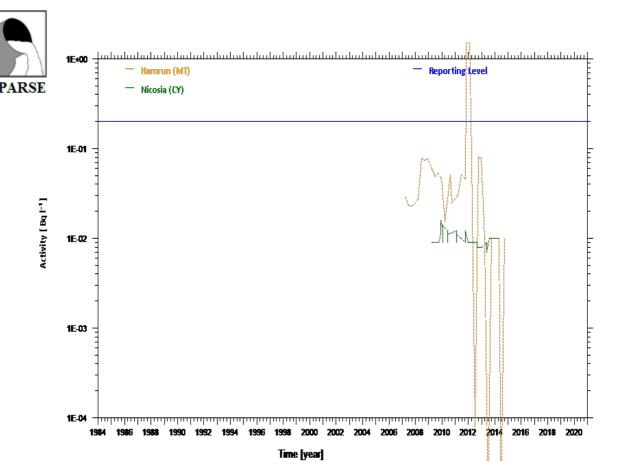


Fig. M20
Activity trends for ⁹⁰Sr in milk (Hamrun and Nicosia)

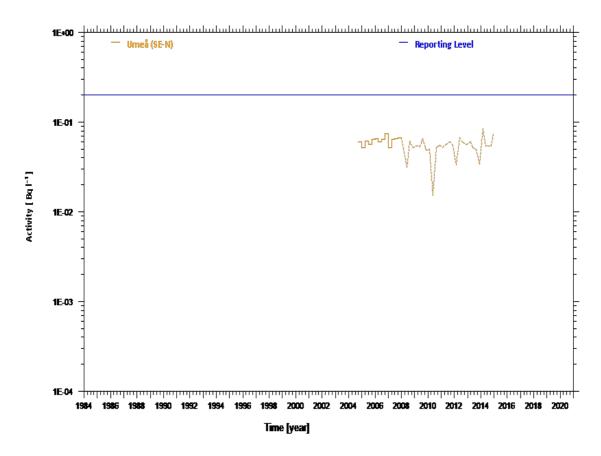
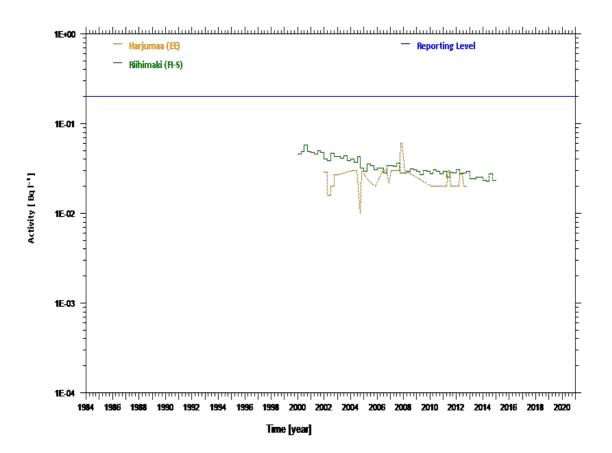
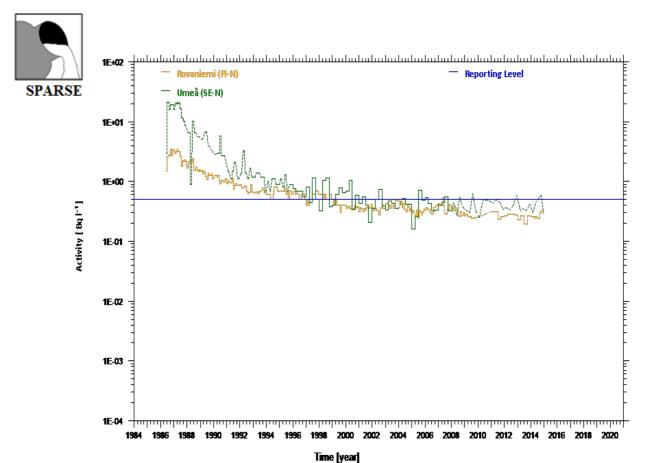




Fig. M21
Activity trends for ⁹⁰Sr in milk (Umeå)

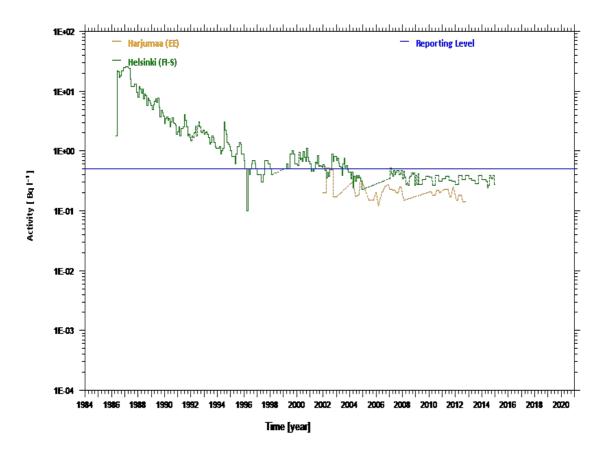


Fig. M22Activity trends for ⁹⁰Sr in milk (Harjumaa and Riihimaki)

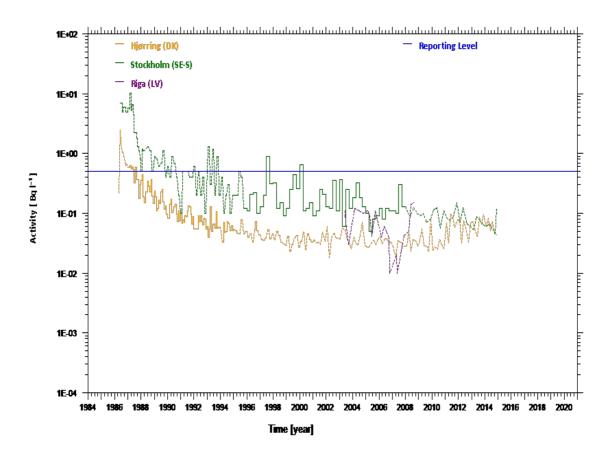


Fig. M23Activity trends for ¹³⁷Cs in milk (Rovaniemi and Umeå)

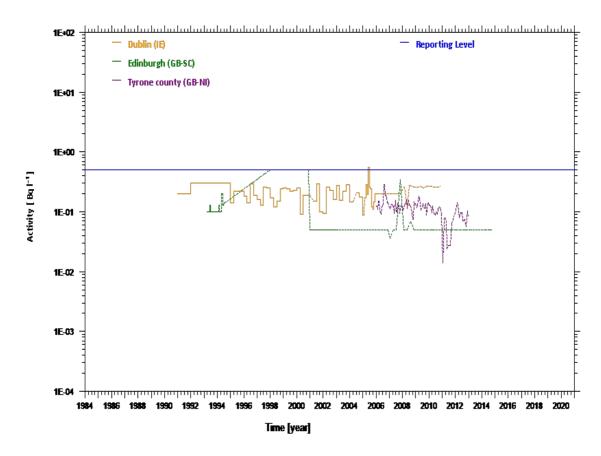


Fig. M24Activity trends for ¹³⁷Cs in milk (Harjumaa and Helsinki)

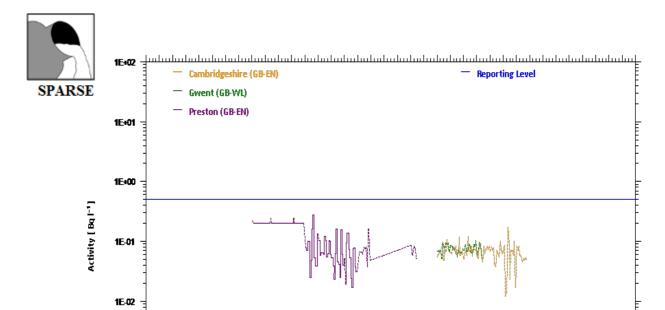


Fig. M25Activity trends for ¹³⁷Cs in milk (Hjørring, Stockholm and Riga)

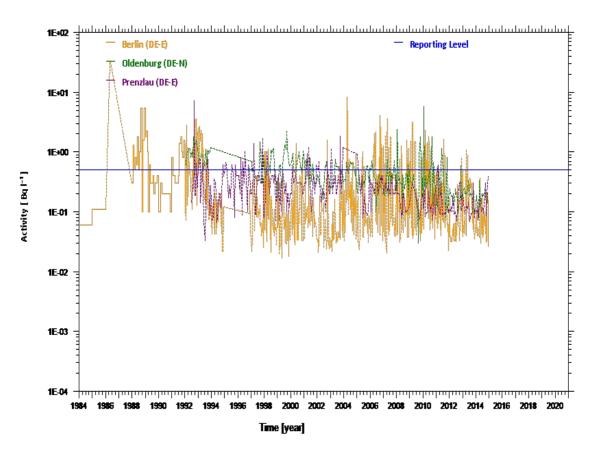
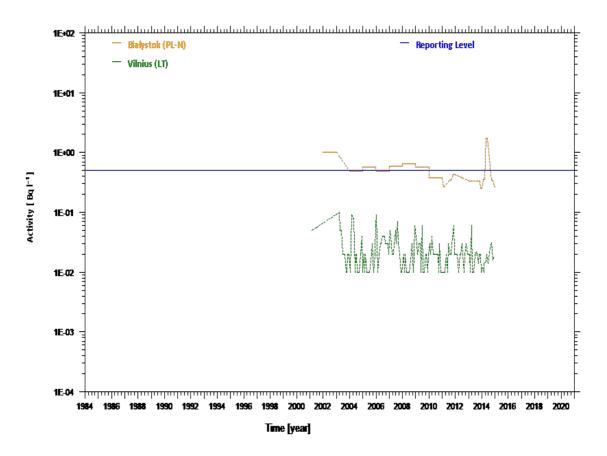

Fig. M26Activity trends for ¹³⁷Cs in milk (Dublin, Edinburgh and Tyrone county)

Fig. M27Activity trends for ¹³⁷Cs in milk (Cambridgeshire, Gwent and Preston)

Time [year]


1E-03

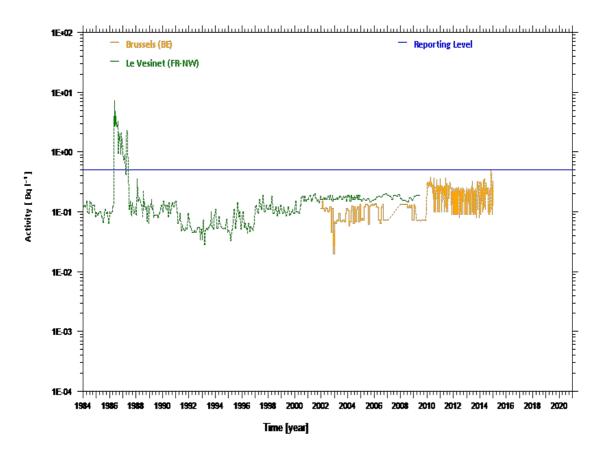

1998 2000 2002 2004 2006 2008 2010 2012 2014 2016

Fig. M28Activity trends for ¹³⁷Cs in milk (Berlin, Oldenburg and Prenzlau)

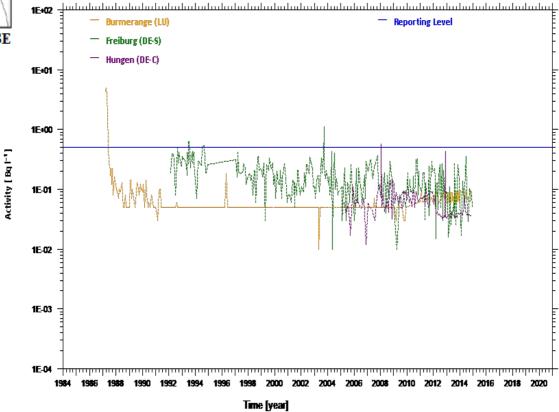


Fig. M29Activity trends for ¹³⁷Cs in milk (Białystok and Vilnius)

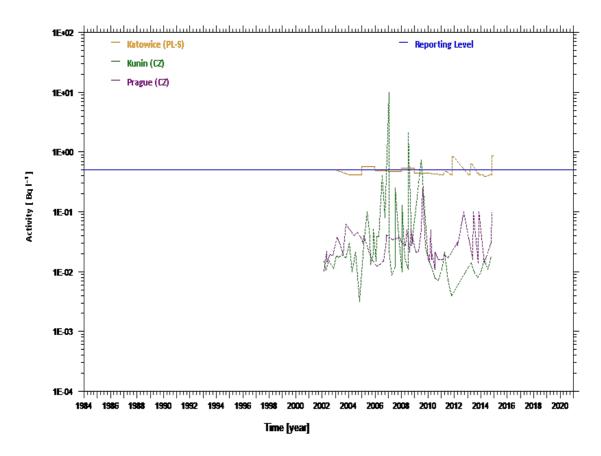


Fig. M30Activity trends for ¹³⁷Cs in milk (Brussels and Le Vesinet)

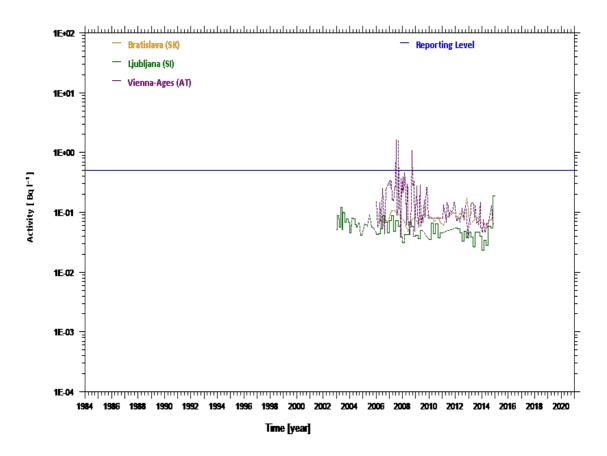


Fig. M31Activity trends for ¹³⁷Cs in milk (Burmerange, Freiburg and Hungen)

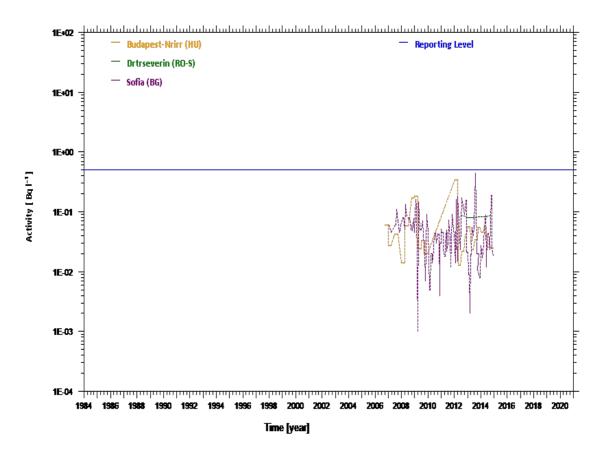


Fig. M32Activity trends for ¹³⁷Cs in milk (Katowice, Kunin and Prague)

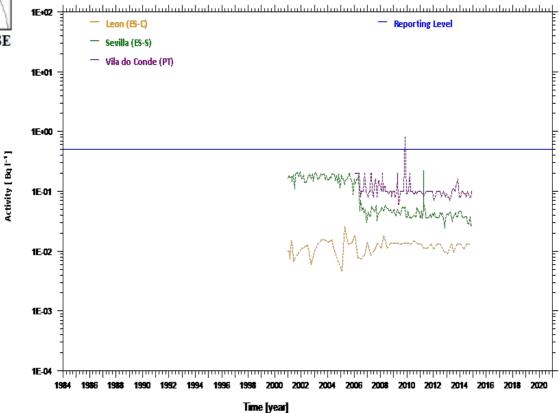


Fig. M33Activity trends for ¹³⁷Cs in milk (Bratislava, Ljubljana and Vienna-Ages)

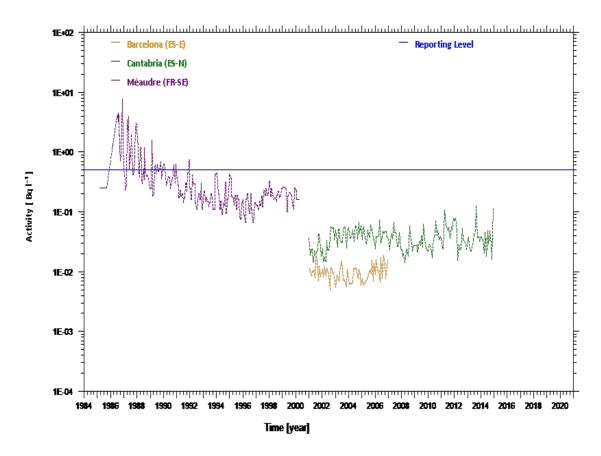


Fig. M34Activity trends for ¹³⁷Cs in milk (Budapest-Nrirr, Drtrseverin and Sofia)

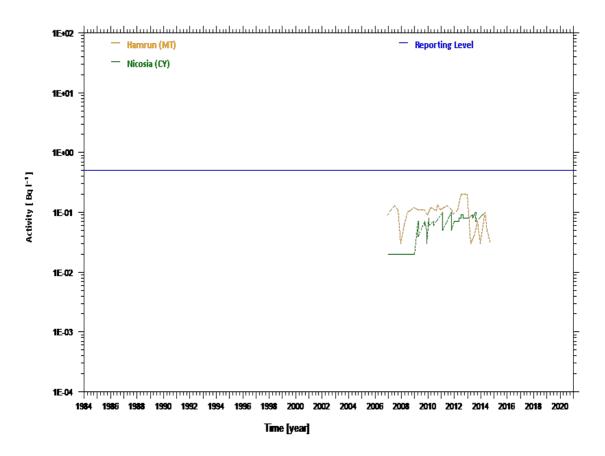
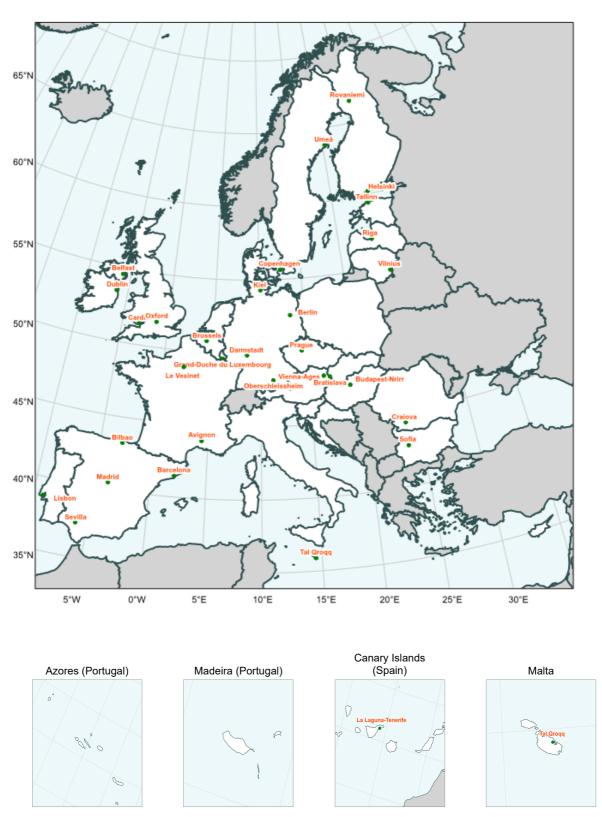
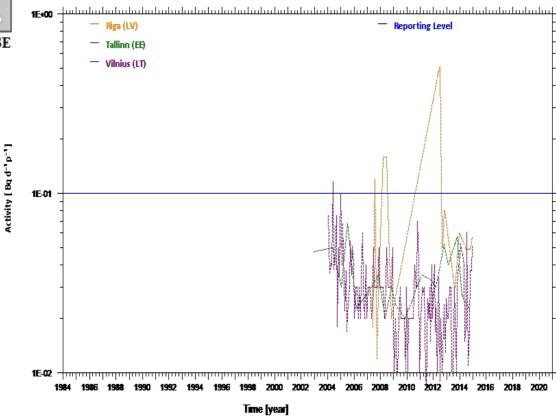


Fig. M35Activity trends for ¹³⁷Cs in milk (Leon, Sevilla and Vila do Conde)


Fig. M36Activity trends for ¹³⁷Cs in milk (Barcelona, Cantabria and Méaudre)


Fig. M37Activity trends for ¹³⁷Cs in milk (Hamrun and Nicosia)

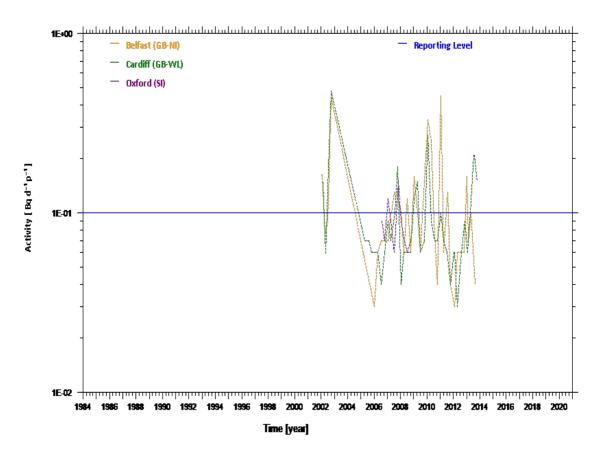


Fig. D7Sampling locations for ⁹⁰Sr and ¹³⁷Cs in mixed diet considered in Figures D8 – D30

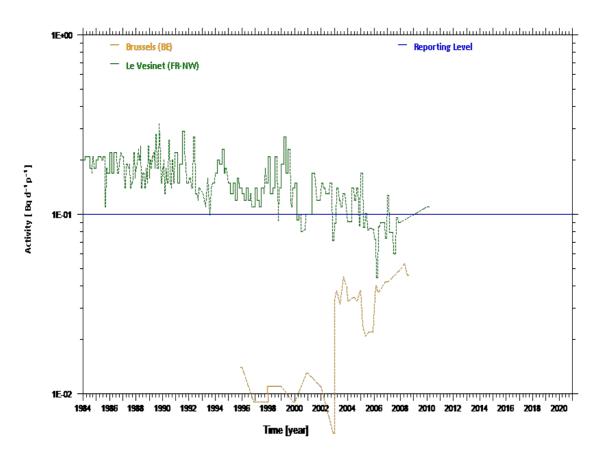


Fig. D8Activity trends for ⁹⁰Sr in mixed diet (Riga, Tallinn and Vilnius)

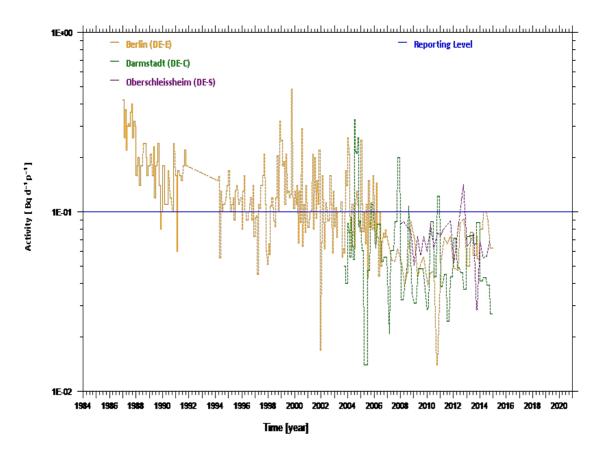


Fig. D9Activity trends for ⁹⁰Sr in mixed diet (Belfast, Cardiff and Oxford)

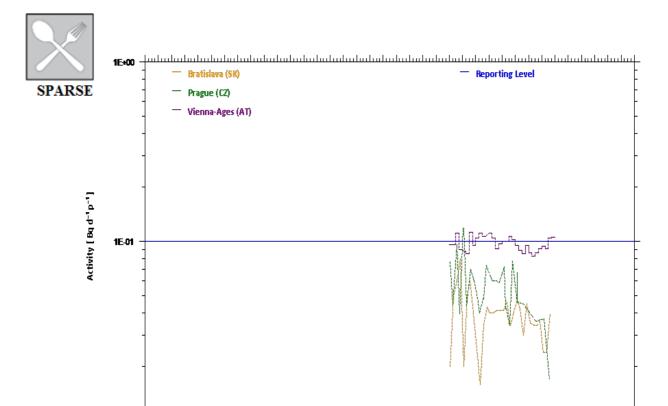
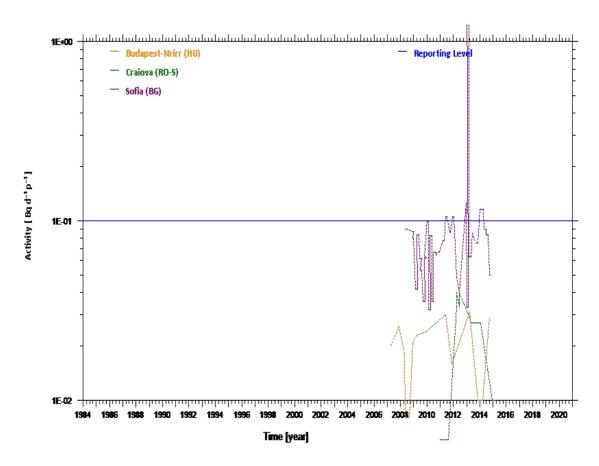


Fig. D10Activity trends for ⁹⁰Sr in mixed diet (Brussels and Le Vesinet)


Fig. D11Activity trends for ⁹⁰Sr in mixed diet (Berlin, Darmstadt and Oberschleissheim)

Time [year]

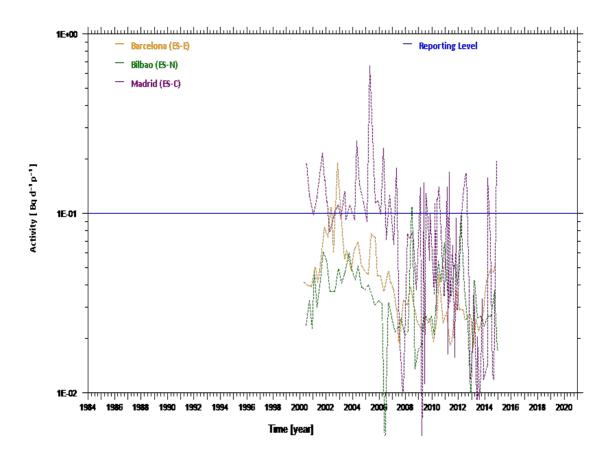

1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020

Fig. D12Activity trends for ⁹⁰Sr in mixed diet (Bratislava, Prague and Vienna-Ages)

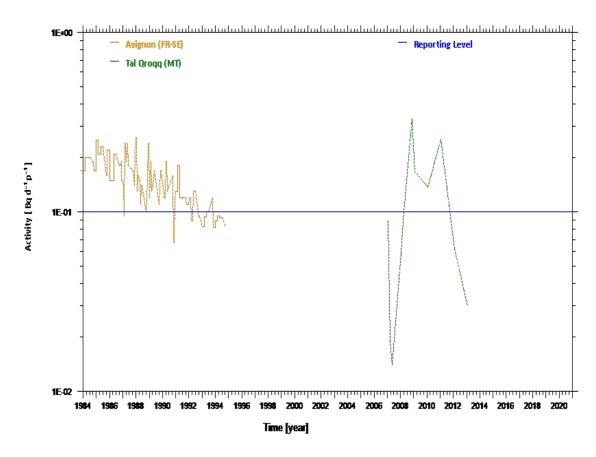


Fig. D13Activity trends for ⁹⁰Sr in mixed diet (Budapest-Nrirr, Craiova and Sofia)

Fig. D14Activity trends for ⁹⁰Sr in mixed diet (Barcelona, Bilbao and Madrid)

Fig. D15Activity trends for ⁹⁰Sr in mixed diet (Avignon and Tal Qroqq)

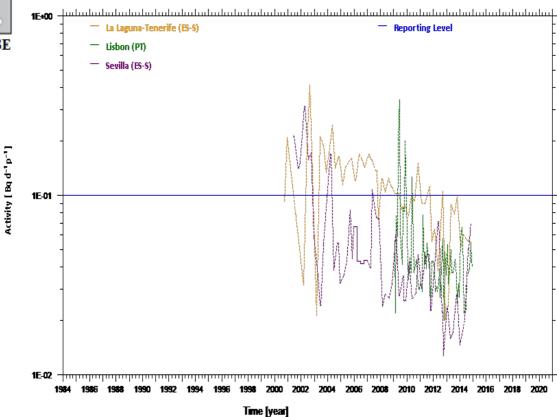
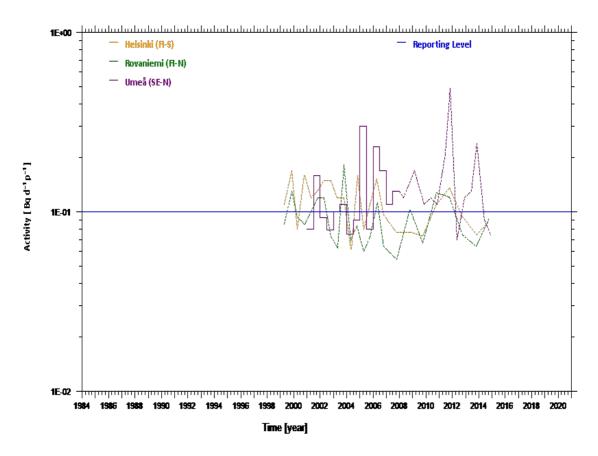
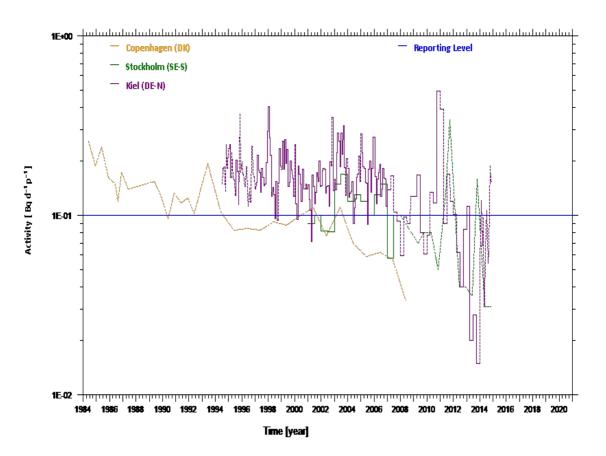
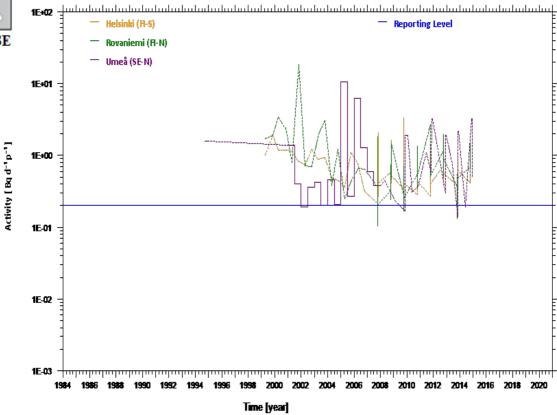




Fig. D16
Activity trends for ⁹⁰Sr in mixed diet (La Laguna-Tenerife, Lisbon and Sevilla)


Fig. D17Activity trends for ⁹⁰Sr in mixed diet (Helsinki, Rovaniemi and Umeå)

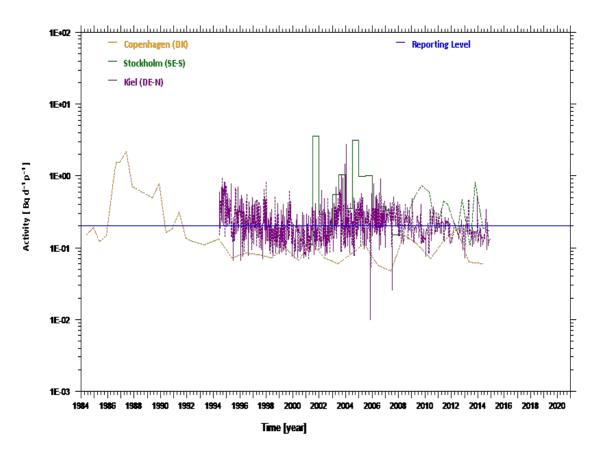


Fig. D18Activity trends for ⁹⁰Sr in mixed diet (Copenhagen, Stockholm and Kiel)

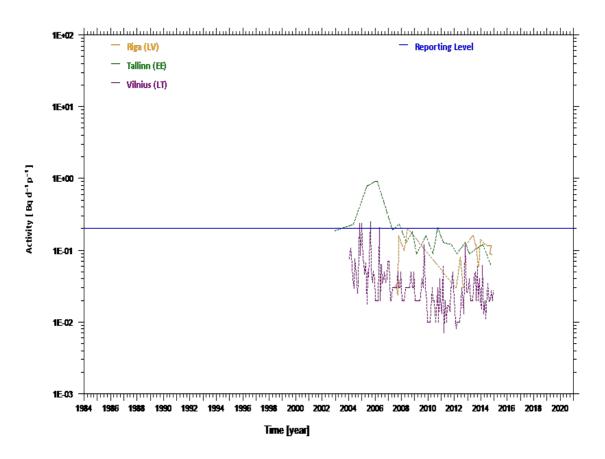


Fig. D19Activity trends for ¹³⁷Cs in mixed diet (Helsinki, Rovaniemi and Umeå)

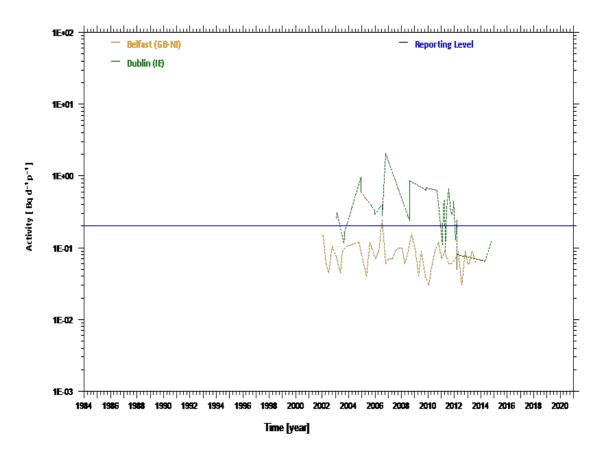
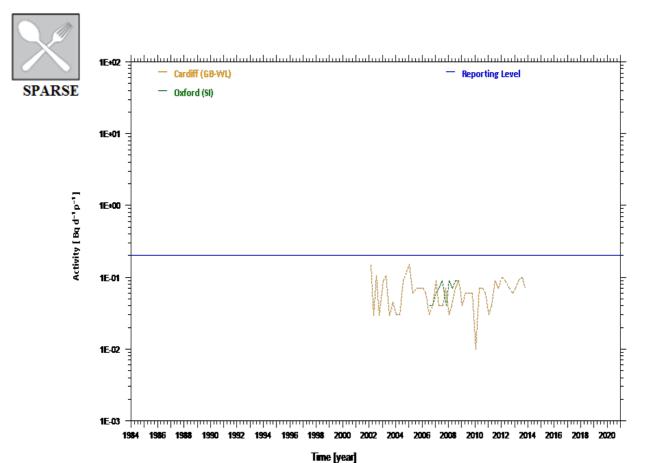


Fig. D20Activity trends for ¹³⁷Cs in mixed diet (Copenhagen, Stockholm and Kiel)



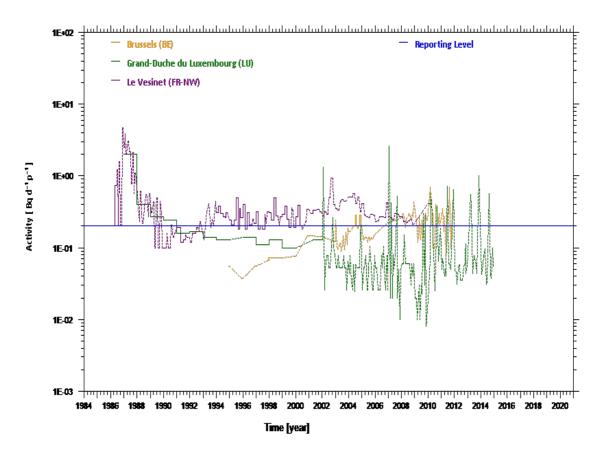

Fig. D21Activity trends for ¹³⁷Cs in mixed diet (Riga, Tallinn and Vilnius)

Fig. D22Activity trends for ¹³⁷Cs in mixed diet (Belfast and Dublin)

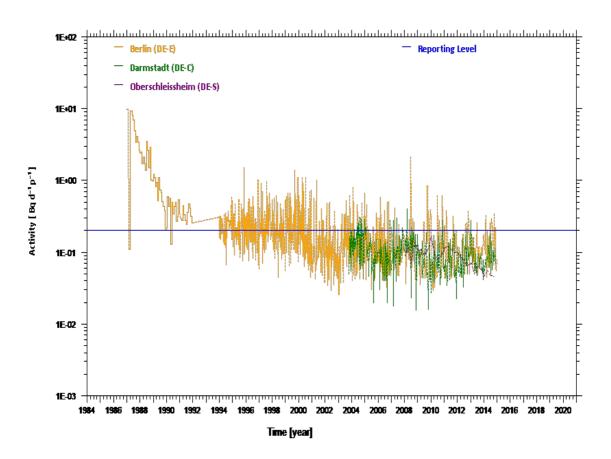


Fig. D23Activity trends for ¹³⁷Cs in mixed diet (Cardiff and Oxford)

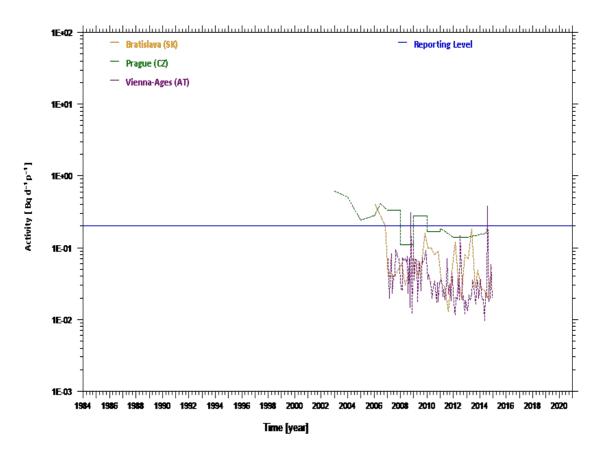


Fig. D24Activity trends for ¹³⁷Cs in mixed diet (Brussels, Grand-Duche du Luxembourg and Le Vesinet)

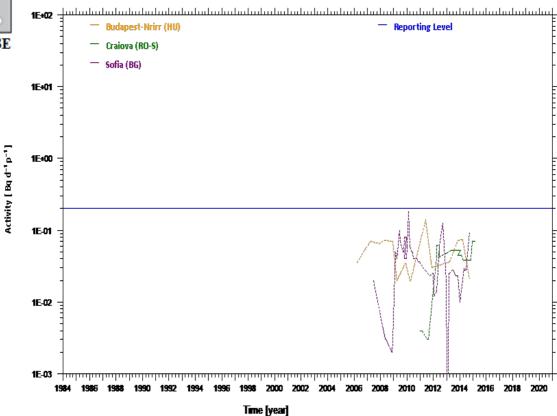


Fig. D25Activity trends for ¹³⁷Cs in mixed diet (Berlin, Darmstadt and Oberschleissheim)

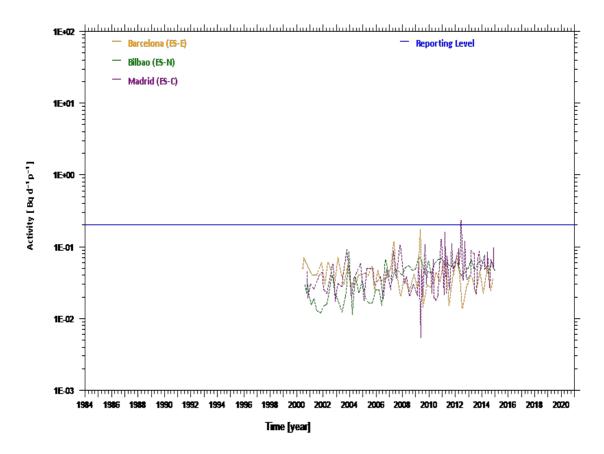


Fig. D26Activity trends for ¹³⁷Cs in mixed diet (Bratislava, Prague and Vienna-Ages)

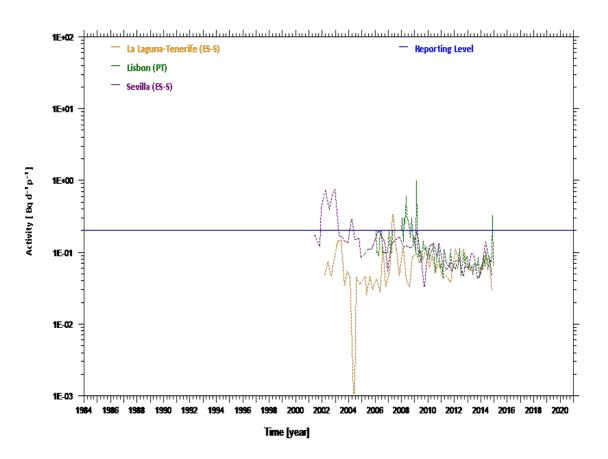


Fig. D27Activity trends for ¹³⁷Cs in mixed diet (Budapest-Nrirr, Craiova and Sofia)

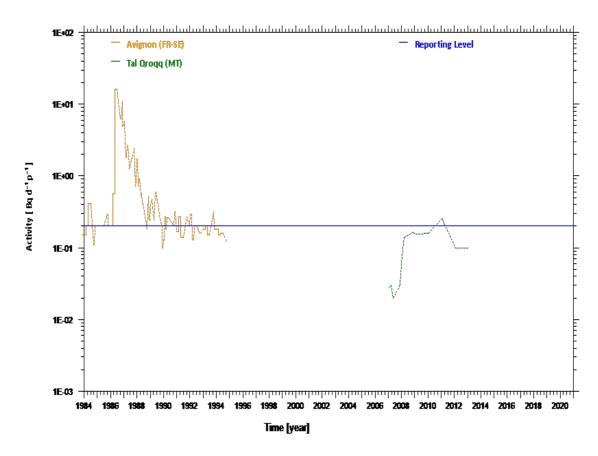


Fig. D28Activity trends for ¹³⁷Cs in mixed diet (Barcelona, Bilbao and Madrid)

Fig. D29Activity trends for ¹³⁷Cs in mixed diet (La Laguna-Tenerife, Lisbon and Sevilla)

Fig. D30Activity trends for ¹³⁷Cs in mixed diet (Avignon and Tal Qroqq)

Appendix A

Origins and contents of Articles 35 and 36

The treaty establishing the European Atomic Energy Community (EURATOM) was signed in Rome on 25 March 1957. Title 2 of the Euratom Treaty sets out provisions for the encouragement of progress in the fields of nuclear energy.

Chapter III of Title 2 deals with Health and Safety matters.

Article 35 states: "Each Member State shall establish the facilities necessary to carry out continuous monitoring of the levels of radioactivity in the air, water and soil and to ensure compliance with the basic standards. The Community shall have the right of access to such facilities so that it may verify their operation and efficiency".

Article 36 states: "The appropriate authorities shall periodically communicate information on the checks referred to in Article 35 to the Community so that it is kept informed of the level of radioactivity to which the public is exposed".

The Commission Recommendations to Article 36 of the Euratom Treaty (2000/473/Euratom)

In addition to articles 35 and 36 of the Euratom Treaty, a Commission Recommendation (2000/473/Euratom) has been published (OJ L191 of 27.7.2000) in view of providing more detailed information on which sample types and radionuclide categories EU Member States should report to the Commission. In addition, more practical information is provided on recommended procedures and the time frame in which this data transfer has to be done.

The Commission Recommendation provides supplementary information on the sampling locations and of the recommended sample types and radionuclide categories on which information should be transmitted. This is summarised in the two tables below.

Sample type	Sampling locations	Additional information requested	
Airborne particulates	Vicinity of densely populated areas ensuring adequate geographical coverage		
External ambient gamma dose-rate			
Surface water	Major inland waters at places for which flow rate information is available and, if relevant, from coastal waters	Average flow rate during which the sample was taken	
Drinking water	Compliant with the drinking water directive (98/83/EC) Major ground or surface water supplies and for water distribution networks	Annual water volume distributed or produced	
Milk	Dairies, sufficiently spread to ensure a representative average	Production rate	
Mixed diet	Separate ingredients from market places or local distribution centres Complete meals from large consumption centres (canteens, restaurants,)	Composition of mixed diet	

Modia	Measurement category			
Media	Dense network	Sparse network		
Airborne particulates	¹³⁷ Cs, gross beta	¹³⁷ Cs, ⁷ Be		
Air	Ambient gamma dose rate	Ambient gamma dose rate		
Surface water	¹³⁷ Cs, residual beta	¹³⁷ Cs		
Drinking water	³ H, ⁹⁰ Sr, ¹³⁷ Cs	³ H, ⁹⁰ Sr, ¹³⁷ Cs		
	Natural radionuclides as monitored in compliance with Council Directive 98/83/EC	Natural radionuclides as monitored in compliance with Council Directive 98/83/EC		
Milk	⁹⁰ Sr, ¹³⁷ Cs	⁹⁰ Sr, ¹³⁷ Cs, ⁴⁰ K		
Mixed diet	⁹⁰ Sr, ¹³⁷ Cs	⁹⁰ Sr, ¹³⁷ Cs, ¹⁴ C		

Appendix B

Method for calculating the reporting levels

Reporting levels were used in the report with the aim to improve transparency when bringing together measurements as significant values and as constraint values. Uniform constraint levels have been defined on the basis of their significance from the health point of view, irrespective of the detection limits applied by the different laboratories. Although the calculation is based on a reference annual dose, it needs to be emphasized that the reporting levels are only meant to be a tool for transparent reporting and should not be confused with maximum permitted levels of radioactive contamination. The reporting level RL is derived as:

$$RL = \frac{DL}{RF.EDC.CF}$$
 (1)

where: DL = annual dose limit, taken to be 1 milli-

sievert [1]

RF = reduction factor of the dose limit, taken to

1000

EDC = effective dose coefficient in Sv/Bq

CF = annual consumption per person

The basic annual dose limit for the public equals 1 millisievert. This limit, decreased by a factor of thousand, i.e. 1 microsievert, can be regarded as having no radiological significance. Using a nominal probability coefficient of stochastic effects for the whole population of 5.10⁻² per sievert [1], taking only fatal cancers into consideration, this dose represents a radiological risk of 5.10⁻⁸ per year.

Reporting levels are introduced only for artificial radionuclides (³H, ⁹⁰Sr and ¹³⁷Cs). The actual level for natural radionuclides (⁷Be) is indicated in the sparse network graphs. The values for the effective dose coefficient (values for adults were considered), the annual consumption and the rounded values of the reporting levels obtained by applying equation 1 are given in the table below.

Sample type	Radionuclide category	EDC [2]	Annual consumption		Reporting level (rounded values)	
		(Sv/Bq)			(rounde	a values)
Air	gross β (based on ⁹⁰ Sr)	2.4 10 ⁻⁸	8030 m ³	[3]	5.10 ⁻³	Bq m ⁻³
	¹³⁷ Cs	4.6 10 ⁻⁹	8030 m ³	[3]	3.10^{-2}	Bq m ⁻³
Surface water	residual β (based on ⁹⁰ Sr)	2.8 10 ⁻⁸	60 I	*	6.10 ⁻¹	Bq l ⁻¹
	¹³⁷ Cs	1.3 10 ⁻⁸	60 I	*	1.10 ⁰	Bq l ⁻¹
Drinking water	³ H	1.8 10 ⁻¹¹	600 I	[4]	1.10+2	Bq l ⁻¹
J	⁹⁰ Sr	2.8 10 ⁻⁸	600 I	[4]	6.10^{-2}	Bq I ⁻¹
	¹³⁷ Cs	1.3 10 ⁻⁸	600 I	[4]	1.10 ⁻¹	Bq l ⁻¹
Milk	⁹⁰ Sr	2.8 10 ⁻⁸	200 l	[4]	2.10 ⁻¹	Bq I ⁻¹
	¹³⁷ Cs	1.3 10 ⁻⁸	200 I	[4]	5.10 ⁻¹	Bq I ⁻¹
Mixed diet	⁹⁰ Sr	2.8 10 ⁻⁸	365 d		1.10 ⁻¹	Bq d ⁻¹ p ⁻¹
	¹³⁷ Cs	1.3 10 ⁻⁸	365 d		2.10^{-1}	Bq d ⁻¹ p ⁻¹

^{*} assumed to 10 % of the annual drinking water consumption

^[1] ICRP publication 60 : 1990 Recommendations of the ICRP, Pergamon Press (1991)

^[2] Basic Safety Standards (96/29/Euratom, Tables A and B)

^[3] ICRP publication 23: Reference man: Anatomical, Physiological and Metabolic Characteristics, Pergamon Press (1975)

^[4] Commission of the European Communities, Post-Chernobyl Action 5, Underlying data for Derived Intervention Levels, EUR 12553 (1990)

Appendix C

Methods for calculating time and geographical averages

Throughout the report average values were calculated as arithmetic averages with the calculating methods described below.

Air [Bq/m³]

The average concentration A over a period T and within a geographical area G is calculated as follows:

$$\overline{A} = \frac{1}{N_l} \sum_{l=1}^{N_l} \left(\frac{\sum_{i=1}^{N_{ml}} a_{i,l} \Delta t_{i,l}}{\sum_{i=1}^{N_{ml}} \Delta t_{i,l}} \right)$$
(1)

where: $a_{i,l}$ = the value of the i^{th} measurement with duration $\Delta t_{i,l}$ at location I within G

 N_1 = the number of locations within G

 N_{ml} = number of measurements at location I during T

Surface water [Bq/I]

Only time averages for specific locations over a period T are taken. The following formula is used:

$$\overline{S} = \frac{1}{N_m} \sum_{i=1}^{N_m} s_i \tag{2}$$

where: s_i = value of the i^{-th} measurement

 $N_m = number of measurements during T$

Drinking water and milk [Bq/I]

average drinking water concentration W, respectively milk concentration M, over a period of time T and within a geographical area G is calculated as

$$\overline{W} = \frac{1}{N_{l}} \sum_{l=1}^{N_{l}} \left(\frac{\sum_{i=1}^{N_{ml}} w_{i, l} \Delta t_{i, l}}{\sum_{i=1}^{N_{ml}} \Delta t_{i, l}} \right) \text{ or } \overline{M} = \frac{1}{N_{l}} \sum_{l=1}^{N_{l}} \left(\frac{\sum_{i=1}^{N_{ml}} m_{i, l} \Delta t_{i, l}}{\sum_{i=1}^{N_{ml}} \Delta t_{i, l}} \right)$$
(3)

w_{i,l} = value of the ith drinking water where

measurement performed at location

I within G

value of the i^{-th} milk measurement $m_{i,l} =$ performed at location I within G

number of locations within G

number of measurements at location I $N_{ml} =$

during T

Mixed diet [Bq/d.p]

The average mixed diet concentration D over a period of time T and within a geographical area G is calculated as

$$\overline{D} = \frac{1}{Nl} \sum_{l=1}^{N_l} \left(\frac{\sum_{i=1}^{N_{ml}} d_{i, l} \Delta t_{i, l}}{\sum_{i=1}^{N_{ml}} \Delta t_{i, l}} \right)$$
(4)

where: $d_{i,l}$ = the value of the i^{-th} measurement with duration $\Delta t_{i,l}$ at location I within G

 N_1 = the number of locations within G

number of measurements at location I

durina T

Comments

In this report the basic period T is taken to be one month. Quarterly averages were obtained by averaging the corresponding monthly averages. When the available data do not allow the calculation of quarterly averages, semestrial or annual averages are taken.

In most cases data are taken from national reports where, very often, time or space averages are already given. Hence the quantities a, s, w, m and d are sometimes averages themselves, and the calculated averages A, S, W, M and D may only be an approximation of the true average values.

Since the number of measurements per month or region is not always the same, to avoid untoward biases, quarterly and annual regional averages are taken as the mean of the corresponding monthly and quarterly averages respectively. National averages are obtained in the same way starting from the mean of the corresponding monthly regional averages.

Appendix D

Addresses of national competent authorities and main laboratories

Austria

Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft Abteilung V/7 Strahlenschutz Radetzkystraße 2 A-1031 Wien www.bmifuw.at

Bundesministerium für Gesundheit Abteilung III Strahlenschutz Radetzkystraße 2 A-1031 Wien www. bmg.gv.at

Österreichische Agentur für Gesundheit und Ernährungssicherheit Kompetenzzentrum für Strahlenschutz und Radiochemie Spargelfeldstraße 191 A-1226 Wien www.ages.at

Belgium

Federal Agency for Nuclear Control (FANC)
Ravenstein street 36
B - 1000 Brussels
www.fanc.fqov.be

SCK·CEN Boeretang 200 B - 2400 Mol www.sckcen.be

IRE
Zoning Industriel
Avenue de l'Espérance
B – 6220 Fleurus
www.ire.eu

Bulgaria

Executive Environment Agency 136, Tsar Boris III blvd 1618 Sofia

National Center of Radiobiology and Radiation Protection
3, Georgi Sofiiski Blvd
1606 Sofia
http://www.ncrrp.org

Croatia

Ministry of the Interior, Civil Protection Directorate Nehajska 5 HR-10000 Zagreb, CROATIA https://civilna-zastita.gov.hr/

Institute for Medical Research and Occupational Health
Ksaverska cesta 2, POB 291
HR-10001 Zagreb, CROATIA
https://www.imi.hr/en/

Cyprus

Radiation Inspection and Control Service Department of Labour Inspection 12, Apellis Street 1493 Nicosia www.mlsi.gov.cy/dli

State General Laboratory 44, Kimonos Street 1451 Nicosia www.moh.gov.cy/sgl

Czech Republic

Státní úřad pro jadernou bezpečnost Senovážné nám. 9 CZ-11000 Praha 1 www.sujb.cz

Státní ústav radiační ochrany Bartoškova 28 CZ-14000 Praha 4 www.suro.cz

Denmark

Technical University of Denmark
DTU Environment
Radioecology and Tracer Studies Group
Climate and Monitoring
Frederiksborgvej 399, Building 201
4000 Roskilde
www.dtu.dk

Estonia

Environmental Board Roheline 64 80010 Pärnu https://keskkonnaamet.ee/en

Finland

Radiation and Nuclear Safety Authority (STUK)

Research and Environmental Surveillance P.O. Box 14 FIN-00881 Helsinki www.stuk.fi

France

Autorité de Sûreté Nucléaire (ASN) 15 Rue Louis Lejeune F - 92120 Montrouge www.asn.fr

Institut de Radioprotection et de Sûreté Nucléaire Pôle santé et environnement Direction de l'environnement 31, rue de l'Ecluse B.P. 40035 F - 78116 Le Vesinet www.irsn.fr

Germany

Bundesministerium für Umwelt, Naturschutz, nukleare Sicherheit und Verbraucherschutz Referat S II 5 Postfach 120 629 D - 53048 Bonn www.bmub.bund.de

Deutscher Wetterdienst - Zentrale Frankfurter Straße 135 D - 63067 Offenbach am Main www.dwd.de

Bundesamt für Strahlenschutz Referat PB 3 Ingolstädter Landstraße 1 D - 85764 Oberschleißheim www.bfs.de

Greece

Greek Atomic Energy Commission PO Box 60092 GR - 15341 Aghia Paraskevi, Attiki http://en.eeae.gr

Environmental Radioactivity Laboratory
Institute of Nuclear Technology - Radiation Protection
NCSR "Demokritos"
GR - 15310 Aghia Paraskevi, Attiki
www.ipta.demokritos.gr

Hungary

Ministry of Health (EüM) Frédéric Joliot-Curie National Research Institute for Radiobiology and Radiohygiene (OSSKI) Anna u. 5. H-1221 Budapest www.osski.hu/index_en.php

Public Health and Medical Officer Service (ÁNTSZ) Gyáli út 2-6 H-1097 Budapest www.antsz.hu

Ministry of Agriculture
National Food Chain Safety Office, Food Chain Safety
Laboratory Directoratw
Radiological Reference Laboratory
Fogoly utca 13-15
H-1182 Budapest
https://www.nebih.gov.hu/en

Ministry of Environment and Water (KvVM):
"Dél-dunántúli Környezetvédelmi, Természetvédelmi
és Vízügyi Felügyelőség"
(DDKTVF)
Papnövelde u. 13
H-7621 Pécs
www.ddkvf.hu

Hungarian Atomic Energy Authority Fényes Adolf utca 4 H-1036 Budapest www.oah.hu

Nuclear Power Plant Paks H-7031 Paks, P.O.B.: 71 http://www.atomeromu.hu/hu/Lapok/default.aspx

Ireland

Environment Protection Agency Johnstown Castle Estate Wexford, Y35 W821 Ireland www.epa.ie

Italy

ISIN - National Inspectorate for Nuclear Safety and Radiation Protection
Via Capitan Bavastro 116
I - 00154 Roma
https://www.isinucleare.it

Latvia

Latvian Environment, Geology and Meteorology Agency Maskavas 165, Riga, LV-1019 www.lvgma.gov.lv

Food and Veterinary Service Peldu 30 Riga, LV-1050

www.pvd.gov.lv

National Diagnostic Centre Lejupes 3 Riga, LV-1076 www.ndc.gov.lv

Lithuania

Environmental Protection Agency Environment Research Department Radiology Division Juozapaviciaus 9 LT- 09311, Vilnius www.gamta.lt

Radiation Protection Center
Division of Radiological Investigations
Kalvariju 153
LT-08352, Vilnius
www.rsc.lt

National Food and Veterinary Risk Assessment Institute (former National Food and Veterinary Laboratory) Radiology section J.Kairiukscio 10 LT-08409 Vilnius www.nmvrvi.lt

Luxembourg

Direction de la Santé
Division de la Radioprotection
Villa Louvigny
Allée Marconi
L - 2120 Luxembourg
www.sante.lu

Malta

Radiation Protection Commission Unit F22 Mosta Technopark Mosta MST 3000 www.gov.mt

the Netherlands

WFSR - Wageningen University and Research Landelijk Meetnet Radioactiviteit in Voedsel PO Box 230 NL - 6700 AE Wageningen www.wur.nl

Autoriteit Nucleaire Veiligheid en Stralingsbescherming Koningskade 5 Postbus 16001 2500 BA Den Haag www.autoriteitnvs.nl

RIVM - National Institute for Health and the Environment
Centrum Veiligheid
Postbus 1
NL - 3720 BA Bilthoven
www.rivm.nl

Poland

Central Laboratory for Radiological Protection 7, Konwaliowa Str. 03-194 Warsaw www.clor.waw.pl

National Atomic Energy Agency 17, Bonifraterska 00-220 Warsaw www.paa.gov.pl

Portugal

Instituto Superior Técnico
Campus Tecnológico e Nuclear
Laboratório de Proteção e Segurança Radiológica
Estrada Nacional 10 (km 139.7)
2695-066 Bobadela LRS
www.itn.pt

Romania

National Reference Laboratory Directorate National Environmental Protection Agency 294, Splaiul Independentei Street Sector 6 Bucharest www.anpm.ro

Slovak Republic

Public Health Authority of the Slovak republic Trnavska 52, P.O.BOX 45 826 45 Bratislava www.uvzsr.sk

Regional Public Health Authority based in Košice lpeľská 1 040 11 Košice www.ruvzke.sk

Regional Public Health Authority based in Banská Bystrica Cesta k nemocnici 1 975 56 Banská Bystrica <u>www.vzbb.sk</u>

Slovenia

Uprava Republike Slovenije za jedrsko varnost (Slovenian Nuclear Safety Administration) Litostrojska cesta 54 SI-1000 Ljubljana www.ursjv.gov.si

Uprava Republike Slovenije za varstvo pred sevanji (Slovenian Radiation Protection Administration) Ajdovščina 4 SI-1000 Ljubljana www.uvps.gov.si

Institut Jožef Stefan (Jožef Stefan Institute) Jamova cesta 39 SI-1000 Ljubljana <u>www.ijs.si</u>

Zavod za varstvo pri delu (Institute of Occupational Safety)
Pot k izviru 6
SI-1260 Ljubljana-Polje
www.zvd.si

Spain

Consejo de Seguridad Nuclear Justo Dorado, 11 E - 28040 Madrid <u>www.csn.es</u>

Ministerio de Fomento Centro de Estudios y Experimentación de Obras Públicas (CEDEX) Alfonso XII, 3 E - 28014 Madrid www.cedex.es

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) Avenida Complutense, 22 E- 28040 Madrid www.ciemat.es

Sweden

Swedish Defense Research Agency S-164 90 Stockholm www.foi.se

Swedish Radiation Safety Authority S-171 16 Stockholm www.ssm.se

United Kingdom

Department for Environment, Food and Rural Affairs (Defra)

2C Ergon House, 17 Smith Square, London SW1P 3JR www.defra.gov.uk

Scottish Environment Protection Agency (SEPA) Strathallan House The Castle Business Park Stirling FK9 4TZ www.sepa.org.uk

Northern Ireland Environment Agency
Industrial Pollution and Radiochemical Inspectorate
Klondyke Building
Cromac Avenue
Lower Ormeau Road
Belfast BT7 2JA
www.daera-ni.gov.uk/northern-ireland-environmentagency

The Veterinary Laboratories Agency New Haw Addlestone Surrey KT15 3NB www.defra.gov.uk/vla

UKHSA
Centre for Radiation, Chemical and Environmental
Hazards
Radiation Protection Division
Chilton
Didcot
Oxon OX11 0RQ
www.gov.uk/government/organisations/uk-health-

security-agency

UK Health Protection Agency (UKHSA)

Centre for Radiation, Chemical and Environmental

Hazards Scotland
155 Hardgate Road
Glasgow G51 4LS
www.gov.uk/government/organisations/uk-health-security-agency

The Centre for Environment, Fisheries and Aquaculture Science (CEFAS)
Lowestoft Laboratory
Pakefield Road
Lowestoft
Suffolk NR33 0HT
www.Cefas.co.uk

AMEC Winfrith Dorset DT2 8DH www.amec.com

LGC Queens Rd Teddington Middlesex TW11 0LY www.lgc.co.uk

Appendix E

Bibliography - data sources (for 2012-2014)

Austria

Chr. Katzlberger and M. Korner, AGES, CC Strahlenschutz und Radiochemie, Vienna (personal communications)

Belgium

Jurgen CLAES, Michelle BOUCHONVILLE and Lionel SOMBRÉ, Federal Agency for Nuclear Control (FANC). Unit Surveillance of the Territory and Natural Radiation, Brussels (personal communications)

Bulgaria

E. Angelova and H. Halachliyska, Ministry of Environment and Waters, Sofia; R. Totzeva, National Center of Radiobiology and Radiation Protection, Public Exposure Monitoring Laboratory, Sofia (personal communications)

Croatia

Z. Tečić, S. Šoštarić and A. Getaldić. Ministry of the Interior, Civil Protection Directorate, Radiological and Nuclear Safety Sector, Zagreb (personal communications)

Cyprus

Radiation Inspection and Control Service, Department of Labourn Inspection, Ministry of Labour and Social Insurance, Environmental Radioactivity Measurements in Cyprus 2004 - 2009, Lefkosia (Nicosia), 2010 (ISBN 978-9963-38-791-1)

P. Demetriades and M. Tzortzis, Radiation Inspection and Control Service, Nicosia (personal communications)

Czech Republic

V. Starostová, Státní úřad pro jadernou bezpečnost, Prague ; I. Češpírová and M. Hýža, Státní ústav radiační ochrany (personal communications)

Denmark

K. G. Andersson and S. P. Nielsen, Risø National Laboratory for Sustainable Energy (personal communications)

Estonia

A. Polt, Environmental Board, Climate and Radiation Department (personal communications)

Finland

E. Kostiainen and K. Vesterbacka, Radiation and Nuclear Safety Authority, Research and Environmental Surveillance, Helsinki (personal communications)

Raimo Mustonen - Radiation and Nuclear Safety Authority STUK, Surveillance of Environmental Radiation in Finland, Annual report 2007, STUK-B 91/ELOKUU 2008

Raimo Mustonen - Radiation and Nuclear Safety Authority STUK, Surveillance of Environmental Radiation in Finland, Annual report 2008, STUK-B 103/ELOKUU 2009

Raimo Mustonen - Radiation and Nuclear Safety Authority STUK, Surveillance of Environmental Radiation in Finland, Annual report 2009, STUK-B 117/ELOKUU 2010

Raimo Mustonen - Radiation and Nuclear Safety Authority STUK, Surveillance of Environmental Radiation in Finland, Annual report 2010, STUK-B 132/ELOKUU 2011

Raimo Mustonen - Radiation and Nuclear Safety Authority STUK, Surveillance of Environmental Radiation in Finland, Annual report 2011, STUK-B 148/ELOKUU 2012

Raimo Mustonen – Radiation and Nuclear Safety Authority STUK, Surveillance of Environmental Radiation in Finland, Annual report 2012, STUK-B 159/ 2013

Pia Vesterbacka – Radiation and Nuclear Safety Authority STUK, Surveillance of Environmental Radiation in Finland, Annual report 2013, STUK-B 174/ 2014

Pia Vesterbacka – Radiation and Nuclear Safety Authority STUK, Surveillance of Environmental Radiation in Finland, Annual report 2014, STUK-B 190/ 2015

France

F. Leprieur and G. Manificat, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Le Vesinet; (personal communications)

Institut de Radioprotection et de Sûreté Nucléaire, Bilan de l'état radiologique de l'environnement français en 2007

Institut de Radioprotection et de Sûreté Nucléaire, Bilan de l'état radiologique de l'environnement français en 2008 : Synthese des résultats des réseaux de surveillance de l'IRSN, Rapport DEI n° 2009-04

Institut de Radioprotection et de Sûreté Nucléaire, Bilan de l'état radiologique de l'environnement français en 2009 : Synthese des résultats des réseaux de surveillance de l'IRSN

Institut de Radioprotection et de Sûreté Nucléaire, Report on the Radiological State of the Environment in France in 2010-2011

IRSN, Bilan de l'état radiologique de l'environnement français en 2010-2011

IRSN, Bilan de l'état radiologique de l'environnement français en 2012

IRSN, Bilan de l'état radiologique de l'environnement français de juin 2011 à décembre 2014

Germany

Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit (eds.) - Umweltradioaktivität und Strahlenbelastung, Jahresbericht 2007, December 2008

Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit (eds.) - Umweltradioaktivität und Strahlenbelastung, Jahresbericht 2008, December 2009

Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit (eds.) - Umweltradioaktivität und Strahlenbelastung, Jahresbericht 2009, December 2010

Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit (eds.) - Umweltradioaktivität und Strahlenbelastung, Jahresbericht 2010, July 2012

Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit (eds.) - Umweltradioaktivität und Strahlenbelastung, Jahresbericht 2011, July 2013

A. Trugenberger-Schnabel and J. Peter, Bundesamt für Strahlenschutz, Fachbereich Strahlenschutz und Gesundheit, Neuherberg; R. Stapel, Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit (personal communications)

Greece

A. Maltezos - Greek Atomic Energy Commission, Athens (personal communications)

Hungary

Á. Vincze, Hungarian Atomic Energy Authority, Budapest; P. Herczeg and G. Szabo, Ministry of Health, OSSKI, Budapest (personal communications)

OKK-OSSKI, HAKSER 2007 - Annual review of the Joint Environmental Radiation Monitoring System (JERMS) around the nuclear power plant Paks - 2007, November 2008

OKK-OSSKI, HAKSER 2008 - Annual review of the Joint Environmental Radiation Monitoring System (JERMS) around the nuclear power plant Paks - 2008, December 2009

OKK-OSSKI, HAKSER 2009 - Annual review of the Joint Environmental Radiation Monitoring System (JERMS) around the nuclear power plant Paks - 2009, December 2010

OKK-OSSKI, HAKSER 2010 - Annual review of the Joint Environmental Radiation Monitoring System (JERMS) around the nuclear power plant Paks - 2010, December 2011

OKK-OSSKI, HAKSER 2011 - Annual review of the Joint Environmental Radiation Monitoring System (JERMS) around the nuclear power plant Paks - 2008, December 2012

OSSKI, HAKSER 2012 - Annual review of the Joint Environmental Radiation Monitoring System (JERMS) around the nuclear power plant Paks, 2012 – February April 2014

OSSKI, HAKSER 2013 - Annual review of the Joint Environmental Radiation Monitoring System (JERMS) around the nuclear power plant Paks, 2013 – April 2015

OSSKI, HAKSER 2014 - Annual review of the Joint Environmental Radiation Monitoring System (JERMS) around the nuclear power plant Paks, 2014 – March 2016

OAH, OKSER 2012 - Annual review of the National Radiation Monitoring System (OKSER), 2012 – December, 2013

OAH, OKSER 2013 - Annual review of the National Radiation Monitoring System (OKSER), 2013 – December, 2011

OAH, OKSER 2014 - Annual review of the National Radiation Monitoring System (OKSER), 2014 – May, 2016

Ireland

L. Currivan and K. Kelleher – Environmental Protection Agency (former Radiation Protection Institute of Ireland), Wexford (personal communications)

Italy

G. Torri, S. Fontani and G. Menna - ISPRA - Institute for Environmental Protection and Research (personal communications)

Latvia

A. Kirillova - Latvian Environment, Geology and Meteorology Agency; D. Šatrovska, Department of Environmental Protection; I.Krēvica, National Diagnostic Centre, (personal communications)

Lithuania

B. Vilimaite Silobritiene - Environmental Protection Agency, Vilnius; R. Ladygiene and A. Orientene, Radiation Protection Centre, Vilnius; P. Drulia - National Food and Veterinary Risk Assessment Institute (former National Food and Veterinary Laboratory) (personal communications)

Luxembourg

Direction de la Santé, Division de la Radioprotection, Luxembourg - Rapports mensuels des résultats de la surveillance de la radioactivité (2007-2011) Direction de la Santé, Division de la Radioprotection, Luxembourg - Rapports mensuels des résultats de la surveillance de la radioactivité (2012-2014)

Malta

P. Brejza and J. Cremona, Radiation Protection Board Commission (personal communications)

the Netherlands

National Institute for Health and the Environment (RIVM), Environmental radioactivity in the Netherlands - results in 2012, Report 610891005/2014

National Institute for Health and the Environment (RIVM), Environmental radioactivity in the Netherlands - results in 2013, Report 2015-004

National Institute for Health and the Environment (RIVM), Environmental radioactivity in the Netherlands - results in 2014, Report 2016-0182

P. Kwakman, National Institute for Health and the Environment (RIVM), Bilthoven (personal communications)

Poland

J. Klimowicz, National Atomic Energy Agency (personal communications)

Portugal

Ministério da Ciência, Tecnologia e Ensino Superior, Istituto Tecnológico e Nuclear, I.P., Programas de Monitorização Radiológica Ambiental (Ano 2007). ITN, Série A, nº32/2008, ISBN 978-972-8660-33-8.

Ministério da Ciência, Tecnologia e Ensino Superior, Istituto Tecnológico e Nuclear, I.P., Programas de Monitorização Radiológica Ambiental (Ano 2008). ITN, Série A, nº33/2009, ISBN 978-989-96542-0-4.

Ministério da Ciência, Tecnologia e Ensino Superior, Istituto Tecnológico e Nuclear, I.P., Programas de Monitorização Radiológica Ambiental (Ano 2009). ITN, Série A, nº37/2010, ISBN 978-989-96542-5-9.

Ministério da Ciência, Tecnologia e Ensino Superior, Istituto Tecnológico e Nuclear, I.P., Programas de Monitorização Radiológica Ambiental (Ano 2010). ITN, Série A, nº38/2011, ISBN 978-989-96542-6-6.

Instituto Superior Técnico, Laboratório de Proteçao e Segurança Radiológica, Programas de Monitorização Radiológica Ambiental (Ano 2011). LPSR-A, n°39/13, ISBN978-989-96542-7-3.

M.J. Madruga, Instituto Tecnológico e Nuclear (ITN), Unidade de Protecção e Segurança Radiológica (UPSR) (personal communications)

Instituto Superior Técnico, Campus Tecnológico e Nuclear, Laboratório de Proteção e Segurança Radiológica Programas de Monitorização Radiológica Ambiental (Ano 2012) Relatório LPSR-A, nº 40/14 ISBN 978-989-96542-8-0

Instituto Superior Técnico, Campus Tecnológico e Nuclear, Laboratório de Proteção e Segurança Radiológica Programas de Monitorização Radiológica Ambiental (Ano 2013) Relatório LPSR-A, nº 41/15 ISBN 978-989-96542-9-7

Instituto Superior Técnico, Campus Tecnológico e Nuclear, Laboratório de Proteção e Segurança Radiológica Programas de Monitorização Radiológica Ambiental (Ano 2014) Relatório LPSR-A, nº 42/116

ISBN 978-989-20-6528-1

Romania

E. Simion, National Environmental Radioactivity Laboratory, Bucharest (personal communications)

Ana Elena Gherasim, National Environmental Radioactivity Laboratory, Bucharest (personal communications)

Slovak Republic

Ivan Klenovič, Public Health Authority of the Slovak republic; (personal communications)

Slovenia

M. Cindro and M. Križman, Slovenian Nuclear Safety Administration, Ljubljana (personal communications)

Spain

Consejo de Seguridad Nuclear (CSN), Programas de vigilancia radiológica ambiental - resultados 2007, 21.2008. INT-04.17

Consejo de Seguridad Nuclear (CSN), Programas de vigilancia radiológica ambiental - resultados 2008, 23.2009. INT-04.19

Consejo de Seguridad Nuclear (CSN), Programas de vigilancia radiológica ambiental - resultados 2009, 28.2010. INT-04.24

Consejo de Seguridad Nuclear (CSN), Programas de vigilancia radiológica ambiental - resultados 2010, 30.2011. INT-04.26

Consejo de Seguridad Nuclear (CSN), Programas de vigilancia radiológica ambiental - resultados 2011, 35.2012. INT-04.28

Consejo de Seguridad Nuclear (CSN), Programas de vigilancia radiológica ambiental – resultados 2012, 41.2013. INT-04.34

Consejo de Seguridad Nuclear (CSN), Programas de vigilancia radiológica ambiental – resultados 2013, 41.2014. INT-04.35

Consejo de Seguridad Nuclear (CSN), Programas de vigilancia radiológica ambiental – resultados 2014, 48.2015. INT-04.37

S. Luque, I. Marugán, C. Rey, R. Salas and L. Ramos, Consejo de Seguridad Nuclear, Madrid (Personal communications)

Sweden

Swedish Defence Research Agency (FOI), Radionuclide particles in ground level air in Sweden during 2012, FOI-R-3828--SE.

Swedish Defence Research Agency (FOI), Radionuclide particles in ground level air in Sweden during 2013, FOI-R--3864--SE.

Swedish Defence Research Agency (FOI), Radionuclide particles in ground level air in Sweden during 2014, FOI-R--4064--SE.

Swedish Radiation Safety Authority (SSM), data included in the SSM internal database available on request and party directly accessible through SSM website (in Swedish), https://www.stralsakerhetsmyndigheten.se/omraden/miljoovervakning/sokbara-miljodata/miljodatabasen.

United Kingdom

A. Field, A. Funnell, C. Poynton, S. Runacres and P. Tossell, Food Standards Agency; T. Brown, DEFRA; M. Davidson and L. Mitchel, Health Protection Agency; M. Toner, SEPA; H. Mason, LGC; J. Rowe, Environment Agency; (personal communications)

Environment Agency, Northern Ireland Environment Agency, Food Standards Agency and Scottish Environment Protection Agency; Radioactivity in Food and the Environment, 2007; RIFE-13, 2008

Environment Agency, Northern Ireland Environment Agency, Food Standards Agency and Scottish Environment Protection Agency; Radioactivity in Food and the Environment, 2008; RIFE-14, November 2009, ISSN 1365-6414

Environment Agency, Northern Ireland Environment Agency, Food Standards Agency and Scottish Environment Protection Agency; Radioactivity in Food and the Environment, 2009; RIFE-15, October 2010, ISSN 1365-6414 Environment Agency, Northern Ireland Environment Agency, Food Standards Agency and Scottish Environment Protection Agency; Radioactivity in Food and the Environment, 2010; RIFE-16, October 2011, ISSN 1365-6414

Environment Agency, Northern Ireland Environment Agency, Food Standards Agency and Scottish Environment Protection Agency; Radioactivity in Food and the Environment, 2011; RIFE-17, October 2012, ISSN 1365-6414

APPENDIX F

The REM Data bank

After the accident at Chernobyl, a task Force was created by the relevant Directorates of the European Commission (EC) to re-examine all aspects of nuclear safety. The necessity of interpreting a large number of data on environmental radioactivity led to the creation of the REM (Radioactivity Environmental Monitoring) data bank at the Joint Research Centre, Ispra in Italy for holding data on the contamination resulting from the Chernobyl accident.

At a meeting with Member State representatives for the purposes of Articles 35 and 36 of the Euratom Treaty (Luxembourg, October 1987), it was decided to take advantage of the informatic structure of the REM data bank to streamline the various formats adopted in the EU for reporting routine environmental measurements and to prepare the EC report concerning these data in a more systematic way.

The information in REM largely concerns radioactivity levels in Europe of air, deposition, water, milk, meat, crops and vegetables from 1.1.1984 and is continuously being updated. Each data record contains information describing the sample measurement (value, nuclide, etc.), the sample type, location and date of sampling and source of the data.

The REM Data bank contains more than 5,000,000 data records as of October 2022.

For further information please contact: JRC-REMDBSUPPORT@EC.EUROPA.EU

Appendix G

List of Figures and Tables

Introduction

Fig. 1 Definition of the geographical regions used in the Data tables And figures; page 10

Table 1 Definition of country partitions; page 11

Dense network results (2012-2014)

Fig.A1 Sampling locations and geographical averages by year for gross-β in airborne particulates, 2012; page 12

Table A1 Gross-β in airborne particulates, 2012; page 13

Fig.A2 Sampling locations and geographical averages by year for gross-β in airborne particulates, 2013; page 14

Table A2 Gross-β in airborne particulates, 2013; page 15

Fig.A3 Sampling locations and geographical averages by year for gross-β in airborne particulates, 2014; page 16

Table A3 Gross-β in airborne particulates, 2014; page

Fig.A4 Sampling locations and geographical averages by year for ¹³⁷Cs in airborne particulates, 2012; page 18

Table A4 137Cs in airborne particulates, 2012; page 19
Fig.A5 Sampling locations and geographical averages by year for 137Cs in airborne particulates, 2013; page 20

Table A5 137Cs in airborne particulates, 2013; page 21 Sampling locations and geographical averages by year for 137Cs in airborne particulates, 2014; page 22

Table A6 ¹³⁷Cs in airborne particulates, 2014; page 23 Fig. S1 Sampling locations for residual-β and ¹³⁷Cs in surface water considered in Tables S1 – S30; page 24

Fig. S2 Sampling locations for residual-β and 137 Cs in surface water considered in Tables S1 – S30 :IE, GB, SE, FI, EE, LV, LT; page 25

Fig. S3 Sampling locations for residual- β and 137 Cs in surface water considered in Tables S1 – S30 :PT, ES; page 26

Fig. S4 Sampling locations for residual-β and ¹³⁷Cs in surface water considered in Tables S1 – S30 :FR, BE, NL, LU; page 27

Fig. S5 Sampling locations for residual-β and ¹³⁷Cs in surface water considered in Tables S1 – S30 :BE, NL, LU, DK, DE, CZ, AT, HU, SI, HR; page 28

Fig. S6 Sampling locations for residual-β and ¹³⁷Cs in surface water considered in Tables S1 – S30 :DE, PL, LT, CZ, SK, EE, LV; page 29

Fig. S7 Sampling locations for residual-β and ¹³⁷Cs in surface water considered in Tables S1 – S30 :SK, HU, AT, SI, HR, IT; page 30

Fig. S8 Sampling locations for residual-β and ¹³⁷Cs in surface water considered in Tables S1 – S30 :RO, BG; page 31

Fig. S9 Sampling locations for residual-β and ¹³⁷Cs in surface water considered in Tables S1 – S30 :BG, CY; page 32

Fig. S10 Sampling locations for residual-β and ¹³⁷Cs in surface water considered in Tables S1 – S30 :Canary Islands, MT; page 33

Tables S1-S5 Residual-β in surface water, 2012; pages 34-38

Tables S6-S10 Residual- β in surface water, 2013; pages 39-43

Tables S11-S15 Residual-β in surface water, 2014; pages 44-48

Tables S16-S20 ¹³⁷Cs in surface water, 2012; pages 49-53

Tables S21-S25 ¹³⁷Cs in surface water, 2013; pages 54-58

Tables S26-S30 ¹³⁷Cs in surface water, 2014; pages 59-63

Fig.W1 Sampling locations and geographical averages by year for ³H in drinking water, 2012; page 64

Table W1 ³H in drinking water, 2012; page 65

Fig.W2 Sampling locations and geographical averages by year for ³H in drinking water, 2013; page 66

Table W2 ³H in drinking water, 2013; page 67

Fig.W3 Sampling locations and geographical averages by year for ³H in drinking water, 2014; page 68

Table W3 ³H in drinking water, 2014; page 69

Fig.W4 Sampling locations and geographical averages by year for ⁹⁰Sr in drinking water, 2012; page 70

Table W4 90Sr in drinking water, 2012; page 71

Fig.W5 Sampling locations and geographical averages by year for ⁹⁰Sr in drinking water, 2013; page 72

Table W5 90Sr in drinking water, 2013; page 73

Fig.W6 Sampling locations and geographical averages by year for ⁹⁰Sr in drinking water, 2014; page

Table W6 90Sr in drinking water, 2014; page 75

Fig.W7 Sampling locations and geographical averages by year for ¹³⁷Cs in drinking water, 2012; page

Table W7 ¹³⁷Cs in drinking water, 2012; page 77

Fig.W8 Sampling locations and geographical averages by year for ¹³⁷Cs in drinking water, 2013; page

Table W8 ¹³⁷Cs in drinking water, 2013; page 79

Fig.W9 Sampling locations and geographical averages by year for ¹³⁷Cs in drinking water, 2014; page 80

Table W9 ¹³⁷Cs in drinking water, 2014; page 81

Fig.M1 Sampling locations and geographical averages by year for 90Sr in milk, 2012; page 82

Table M1 90Sr in milk, 2012; page 83

Fig.M2 Sampling locations and geographical averages by year for 90Sr in milk, 2013; page 84

Table M2 90Sr in milk, 2013; page 85

Fig.M3 Sampling locations and geographical averages by year for 90Sr in milk, 2014; page 86

Table M3 ⁹⁰Sr in milk, 2014; page 87

Fig.M4 Sampling locations and geographical averages by year for ¹³⁷Cs in milk, 2012; page 88

Table M4 ¹³⁷Cs in milk, 2012; page 89

Fig.M5 Sampling locations and geographical averages by year for ¹³⁷Cs in milk, 2013; page 90

Table M5 137Cs in milk, 2013; page 91

Fig.M6 Sampling locations and geographical averages by year for ¹³⁷Cs in milk, 2014; page 92

Table M6 ¹³⁷Cs in milk, 2014; page 93

Fig.D1	Sampling locations and geographical averages by year for ⁹⁰ Sr in mixed diet, 2012; page 94	Fig. A26	Activity trends for ¹³⁷ Cs in airborne particulates (Brussels, Luxembourg and Bilthoven); page
Table D1	⁹⁰ Sr in mixed diet, 2012; page 95		117
Fig.D2	Sampling locations and geographical averages by year for ⁹⁰ Sr in mixed diet, 2013; page 96	Fig. A27	Activity trends for ¹³⁷ Cs in airborne particulates (Offenbach, Berlin and Braunschweig); page 117
Table D2	90Sr in mixed diet, 2013; page 97	F: A00	
Fig.D3	Sampling locations and geographical averages by year for 90Sr in mixed diet, 2014; page 98	Fig. A28	Activity trends for ¹³⁷ Cs in airborne particulates (Prague, Warsaw and Cracow); page 118
Table D3	⁹⁰ Sr in mixed diet, 2014; page 99	Fig. A29	Activity trends for ¹³⁷ Cs in airborne particulates
Fig.D4	Sampling locations and geographical averages by year for ¹³⁷ Cs in mixed diet, 2012; page 100	F: 400	(Freiburg, Ljubljana and Muenchen- Neuherberg); page 118
Table D4	¹³⁷ Cs in mixed diet, 2012; page 101	Fig. A30	Activity trends for ¹³⁷ Cs in airborne particulates
Fig.D5	Sampling locations and geographical averages by year for ¹³⁷ Cs in mixed diet, 2013; page 102		(Vienna-Ages, Budapest-Nrirr and Bratislava); page 119
Table D5	¹³⁷ Cs in mixed diet, 2013; page 103	Fig. A31	Activity trends for ¹³⁷ Cs in airborne particulates
Fig.D6	Sampling locations and geographical averages		(Sofia, Baia Mare and Bucharest); page 119
. ig.20	by year for ¹³⁷ Cs in mixed diet, 2014; page 104	Fig. A32	Activity trends for ¹³⁷ Cs in airborne particulates
Table D6	¹³⁷ Cs in mixed diet, 2014; page 105	Fig. A22	(Bilbao, Madrid and Barcelona); page 120
		Fig. A33	Activity trends for ¹³⁷ Cs in airborne particulates (Seyne-sur-Mer and Milan); page 120
Sparse r	network results (1984-2014)	Fig. A34	Activity trends for ¹³⁷ Cs in airborne particulates
Fig. A7	Sampling locations for ⁷ Be and ¹³⁷ Cs in	Ü	(La Laguna-Tenerife, Sevilla and Sacavém);
Ü	airborne particulates considered in Figures A8		page 121
	– A35; page 107	Fig. A35	Activity trends for ¹³⁷ Cs in airborne particulates
Fig. A8	Activity trends for ⁷ Be in airborne particulates	ŭ	(Brindisi, Nicosia and Paola); page 121
1 ig. 7 to	(Harku and Utena); page 108	Fig. S11	Sampling locations for ¹³⁷ Cs in surface water
Fig. A9	Activity trends for ⁷ Be in airborne particulates	9	considered in Figures S12 – S26; page 123
i ig. Aa	(Lerwick, Chilton and Clonskeagh); page 108	Fig. S12	Activity trends for ¹³⁷ Cs in surface water
Fig. A10	Activity trends for ⁷ Be in airborne particulates	1 ig. 0 iz	(Hesselø and Terschelling); page 124
rig. Aio	(Bilthoven, Brussels and Luxembourg); page	Fig. S13	Activity trends for ¹³⁷ Cs in surface water
	109	g	(Langwedel and Tangermünde); page 124
Fig. A11	Activity trends for ⁷ Be in airborne particulates	Fig. S14	Activity trends for ¹³⁷ Cs in surface water
rig. Arr	(Braunschweig, Offenbach and Berlin); page	1 ig. 0 i i	(Bohumin, Warsaw and Wroclaw); page 125
	109	Fig. S15	Activity trends for ¹³⁷ Cs in surface water
Fig. A12	Activity trends for ⁷ Be in airborne particulates	1 ig. 0 io	(Andenne, Hastière and Monsin); page 125
119.712	(Warsaw, Cracow and Prague); page 110	Fig. S16	Activity trends for ¹³⁷ Cs in surface water
Fig. A13	Activity trends for ⁷ Be in airborne particulates	g	(Koblenz, Le Vesinet and Schengen); page
1 19.7110	(Freiburg, Ljubljana and Muenchen-		126
	Neuherberg); page 110	Fig. S17	Activity trends for 137Cs in surface water
Fig. A14	Activity trends for ⁷ Be in airborne particulates	ŭ	(Jochenstein and Regensburg); page 126
9	(Vienna-Ages, Bratislava and Budapest); page	Fig. S18	Activity trends for ¹³⁷ Cs in surface water
	111	· ·	(Bratislava, Budapest and Moravský Svätý
Fig. A15	Activity trends for ⁷ Be in airborne particulates		Ján); page 127
	(Baia Mare, Bucharest and Sofia); page 111	Fig. S19	Activity trends for ¹³⁷ Cs in surface water
Fig. A16	Activity trends for ⁷ Be in airborne particulates		(Cernavoda, Kozloduj and Miercureaciuc);
	(Barcelona, Bilbao and Madrid); page 112		page 127
Fig. A17	Activity trends for ⁷ Be in airborne particulates	Fig. S20	Activity trends for ¹³⁷ Cs in surface water
E: A40	(Milan and Seyne-sur-Mer); page 112	Fig. S21	(Krško); page 128 Activity trends for ¹³⁷ Cs in surface water (Cabo
Fig. A18	Activity trends for ⁷ Be in airborne particulates	Fig. 321	Activity trends for "Cs in surface water (Cabo Ajo, Embalse Alcantara and Vila Velha de
	(La Laguna-Tenerife, Sacavém and Sevilla);		Ródão); page 128
Fig. A10	page 113	Fig. S22	Activity trends for ¹³⁷ Cs in surface water (Cabo
Fig. A19	Activity trends for ⁷ Be in airborne particulates (Brindisi and Paola); page 113	1 ig. 022	de Creus, Vallabrègues and Wied Ghammieq);
Fig. A20	Activity trends for ⁷ Be in airborne particulates		page 129
Fig. A20	(Helsinki and Ivalo); page 114	Fig. S23	Activity trends for ¹³⁷ Cs in surface water (Kemi
Fig. A21	Activity trends for ⁷ Be in airborne particulates	9	and Kotka); page 129
119.7121	(Umeå, Kista and Risø); page 114	Fig. S24	Activity trends for ¹³⁷ Cs in surface water
Fig. A22	Activity trends for ¹³⁷ Cs in airborne particulates	3	(Norsborg and Östersund-Storsjön); page 130
9. / ١೭೭	(Ivalo and Helsinki); page 115	Fig. S25	Activity trends for ¹³⁷ Cs in surface water
Fig. A23	Activity trends for ¹³⁷ Cs in airborne particulates	-	(Kauno Marios, Narva and Riga); page 130
J - ==	(Risø, Umeå and Kista); page 115	Fig. S26	Activity trends for ¹³⁷ Cs in surface water
Fig. A24	Activity trends for ¹³⁷ Cs in airborne particulates	-	(Balbriggan and Walton); page 131
-	(Harku, Utena and Baldone; radons); page 116	Fig. W10	Sampling locations for ³ H, ⁹⁰ Sr and ¹³⁷ Cs in
Fig. A25	Activity trends for ¹³⁷ Cs in airborne particulates		drinking water considered in Figures W11 –
-	(Chilton, Lerwick and Clonskeagh); page 116		W45; page 133
		Fig. W11	Activity trends for ³ H in drinking water
			(Helsinki, Rovaniemi and Tallinn); page 134

Fig. W12	Activity trends for ³ H in drinking water (Norsborg and Östersund-Storsjön); page 134	Fig. W42	Activity trends for ¹³⁷ Cs in drinking water (Ljubljana, Milano and Nîmes); page 149
Fig. W13	Activity trends for ³ H in drinking water (Riga,	Fig. W43	Activity trends for 137Cs in drinking water
Fig. W14	Utena and Vilnius); page 135 Activity trends for ³ H in drinking water	Fig. W44	(Barcelona, Bilbao and Madrid); page 150 Activity trends for ¹³⁷ Cs in drinking water
rig. W14	(Cornwall and Tunstall); page 135	rig. vv44	(Castelo de Bode, La Laguna-Tenerife and
Fig. W15	Activity trends for ³ H in drinking water		Sevilla); page 150
9	(Brussels); page 136	Fig. W45	Activity trends for ¹³⁷ Cs in drinking water
Fig. W16	Activity trends for ³ H in drinking water	J	(Deva, Nicosia and Sliema); page 151
J	(Wiesbaden, Berlin and Langelsheim); page	Fig. M7	Sampling locations for 90Sr and 137Cs in milk
	136		considered in Figures M8 – M37; page 153
Fig. W17	Activity trends for ³ H in drinking water (Flaje and Svihof); page 137	Fig. M8	Activity trends for ⁹⁰ Sr in milk (Hjørring, Stockholm and Riga); page 154
Fig. W18	Activity trends for ³ H in drinking water	Fig. M9	Activity trends for 90Sr in milk (Dublin,
3	(Bratislava, Budapest-Nrirr and Vienna-Ages);	9	Edinburgh and Tyrone county); page 154
	page 137	Fig. M10	Activity trends for 90Sr in milk (Cambridgeshire,
Fig. W19	Activity trends for ³ H in drinking water		Gwent and Rovaniemi); page 155
	(Bucharest and Constanta); page 138	Fig. M11	Activity trends for 90Sr in milk (Berlin,
Fig. W20	Activity trends for ³ H in drinking water	E: 1440	Oldenburg and Prenzlau); page 155
Eig W21	(Ljubljana, Nîmes and Sliema); page 138	Fig. M12	Activity trends for 90Sr in milk (Białystok and
Fig. W21	Activity trends for ³ H in drinking water (Barcelona, Bilbao and Madrid); page 139	Fig. M13	Vilnius); page 156 Activity trends for ⁹⁰ Sr in milk (Brussels,
Fig. W22	Activity trends for ³ H in drinking water (Castelo	Fig. W13	Cléville and Le Vesinet); page 156
g	de Bode, La Laguna-Tenerife and Sevilla);	Fig. M14	Activity trends for 90Sr in milk (Freiburg and
	page 139	3	Hungen); page 157
Fig. W23	Activity trends for 90Sr in drinking water	Fig. M15	Activity trends for 90Sr in milk (Kunin and
	(Helsinki, Rovaniemi and Tallinn); page 140		Prague); page 157
Fig. W24	Activity trends for 90Sr in drinking water	Fig. M16	Activity trends for 90Sr in milk (Bratislava,
Fig. MOE	(Norsborg and Östersund-Storsjön); page 140	E: 1447	Ljubljana and Vienna-Ages); page 158
Fig. W25	Activity trends for ⁹⁰ Sr in drinking water (Cornwall and Tunstall); page 141	Fig. M17	Activity trends for 90Sr in milk (Budapest-Nrirr, Drtrseverin and Sofia); page 158
Fig. W26	Activity trends for ⁹⁰ Sr in drinking water	Fig. M18	Activity trends for ⁹⁰ Sr in milk (Leon, Sevilla
g. 1120	(Langelsheim, Wiesbaden and Berlin); page	1 ig. W10	and Vila do conde); page 159
	141	Fig. M19	Activity trends for ⁹⁰ Sr in milk (Barcelona,
Fig. W27	Activity trends for 90Sr in drinking water (Flaje,	J	Cantabria and Méaudre); page 159
	Frauenau and Svihof); page 142	Fig. M20	Activity trends for 90Sr in milk (Hamrun and
Fig. W28	Activity trends for 90 Sr in drinking water	E: 1404	Nicosia); page 160
Fig. W29	(Bratislava and Vienna-Ages); page 142 Activity trends for ⁹⁰ Sr in drinking water (Deva,	Fig. M21	Activity trends for ⁹⁰ Sr in milk (Umeå); page 160
1 ig. vv29	Sliema and Sofia); page 143	Fig. M22	Activity trends for ⁹⁰ Sr in milk (Harjumaa and
Fig. W30	Activity trends for ⁹⁰ Sr in drinking water	i ig. ivizz	Riihimaki); page 161
9	(Ljubljana and Nîmes); page 143	Fig. M23	Activity trends for ¹³⁷ Cs in milk (Rovaniemi and
Fig. W31	Activity trends for 90Sr in drinking water	Ü	Umeå); page 162
	(Barcelona, Bilbao and Madrid); page 144	Fig. M24	Activity trends for 137Cs in milk (Harjumaa and
Fig. W32	Activity trends for 90Sr in drinking water		Helsinki); page 162
	(Castelo de Bode, La Laguna-Tenerife and Sevilla); page 144	Fig. M25	Activity trends for ¹³⁷ Cs in milk (Hjørring,
Fig. W33	Activity trends for ¹³⁷ Cs in drinking water	Fig. M26	Stockholm and Riga); page 163 Activity trends for ¹³⁷ Cs in milk (Dublin,
1 ig. 1100	(Helsinki and Rovaniemi); page 145	Fig. M26	Edinburgh and Tyrone county); page 163
Fig. W34	Activity trends for ¹³⁷ Cs in drinking water	Fig. M27	Activity trends for ¹³⁷ Cs in milk
· ·	(Norsborg and Östersund-Storsjön); page 145	g	(Cambridgeshire, Gwent and Preston); page
Fig. W35	Activity trends for ¹³⁷ Cs in drinking water (Riga		164
E: 14/00	and Tallinn); page 146	Fig. M28	Activity trends for ¹³⁷ Cs in milk (Berlin,
Fig. W36	Activity trends for ¹³⁷ Cs in drinking water	F: 1400	Oldenburg and Prenzlau); page 164
Fig. W37	(Cornwall and Tunstall); page 146 Activity trends for ¹³⁷ Cs in drinking water	Fig. M29	Activity trends for ¹³⁷ Cs in milk (Białystok and
1 lg. VV31	(Esch-sur-Sure); page 147	Fig. M30	Vilnius); page 165 Activity trends for ¹³⁷ Cs in milk (Brussels and
Fig. W38	Activity trends for ¹³⁷ Cs in drinking water	1 lg. 14150	Le Vesinet); page 165
Ü	(Wiesbaden, Berlin and Langelsheim); page	Fig. M31	Activity trends for ¹³⁷ Cs in milk (Burmerange,
	147	ŭ	Freiburg and Hungen); page 166
Fig. W39	Activity trends for ¹³⁷ Cs in drinking water	Fig. M32	Activity trends for ¹³⁷ Cs in milk (Katowice,
Fig. 14/40	(Białystok, Bydgoszcz and Wroclaw); page 148	.	Kunin and Prague); page 166
Fig. W40	Activity trends for ¹³⁷ Cs in drinking water (Flaje, Frauenau and Svihof); page 148	Fig. M33	Activity trends for ¹³⁷ Cs in milk (Bratislava,
Fig. W41	Activity trends for ¹³⁷ Cs in drinking water	Fig. M34	Ljubljana and Vienna-Ages); page 167 Activity trends for ¹³⁷ Cs in milk (Budapest-Nrirr,
	(Bratislava, Budapest-Nrirr and Vienna-Ages);	1 19. 1110 4	Drtrseverin and Sofia); page 167
	page 149		· -··· -·····, F-3 - · · ·

Fig. M35	Activity trends for "Cs in milk (Leon, Sevilla
F: 1400	and Vila do Conde); page 168
Fig. M36	Activity trends for ¹³⁷ Cs in milk (Barcelona, Cantabria and Méaudre); page 168
Fig. M37	Activity trends for ¹³⁷ Cs in milk (Hamrun and
. ig. iiioi	Nicosia); page 169
Fig. D7	Sampling locations for 90Sr and 137Cs in mixed
J	diet considered in Figures D8 – D30; page 171
Fig. D8	Activity trends for ⁹⁰ Sr in mixed diet (Riga, Tallinn and Vilnius); page 172
Fig. D9	Activity trends for 90 Sr in mixed diet (Belfast,
g 0	Cardiff and Oxford); page 172
Fig. D10	Activity trends for 90Sr in mixed diet (Brussels
· ·	and Le Vesinet); page 173
Fig. D11	Activity trends for 90Sr in mixed diet (Berlin,
	Darmstadt and Oberschleissheim); page 173
Fig. D12	Activity trends for 90Sr in mixed diet (Bratislava,
	Prague and Vienna-Ages); page 174
Fig. D13	Activity trends for 90 Sr in mixed diet (Budapest-
	Nrirr, Craiova and Sofia); page 174
Fig. D14	Activity trends for 90Sr in mixed diet
	(Barcelona, Bilbao and Madrid); page 175
Fig. D15	Activity trends for 90Sr in mixed diet (Avignon
E: D40	and Tal Qroqq); page 175
Fig. D16	Activity trends for 90Sr in mixed diet (La
	Laguna-Tenerife, Lisbon and Sevilla); page
Fig. D17	176
Fig. D17	Activity trends for ⁹⁰ Sr in mixed diet (Helsinki, Rovaniemi and Umeå); page 176
Fig. D18	Activity trends for ⁹⁰ Sr in mixed diet
1 lg. D 10	(Copenhagen, Stockholm and Kiel); page 177
Fig. D19	Activity trends for ¹³⁷ Cs in mixed diet (Helsinki,
1 ig. D 10	Rovaniemi and Umeå); page 178
Fig. D20	Activity trends for ¹³⁷ Cs in mixed diet
g	(Copenhagen, Stockholm and Kiel); page 178
Fig. D21	Activity trends for ¹³⁷ Cs in mixed diet (Riga,
J	Tallinn and Vilnius); page 179
Fig. D22	Activity trends for ¹³⁷ Cs in mixed diet (Belfast
	and Dublin); page 179
Fig. D23	Activity trends for ¹³⁷ Cs in mixed diet (Cardiff
	and Oxford); page 180
Fig. D24	Activity trends for ¹³⁷ Cs in mixed diet (Brussels,
	Grand-Duche du Luxembourg and Le Vesinet);
	page 180
Fig. D25	Activity trends for ¹³⁷ Cs in mixed diet (Berlin,
	Darmstadt and Oberschleissheim); page 181
Fig. D26	Activity trends for ¹³⁷ Cs in mixed diet
	(Bratislava, Prague and Vienna-Ages); page 181
Eig D27	
Fig. D27	Activity trends for ¹³⁷ Cs in mixed diet (Budapest-Nrirr, Craiova and Sofia); page 182
Fig. D28	Activity trends for ¹³⁷ Cs in mixed diet
1 1y. DZ0	(Barcelona, Bilbao and Madrid); page 182
Fig. D29	Activity trends for ¹³⁷ Cs in mixed diet (La
. ig. D20	Laguna-Tenerife, Lisbon and Sevilla); page
	183
Fig. D30	Activity trends for ¹³⁷ Cs in mixed diet (Avignon
5	and Tal Qroqq); page 183

Glossary

ABSORBED DOSE The amount of energy imparted by the ionising radiation to unit mass of

absorbing material. It is expressed in gray, Gy. (1 Gy = 1 Joule per kilogram).

ACTIVITY The amount of a radionuclide at a given time. It expresses the rate at which radioactive transformations occur. The unit of measurement is the becquerel, Bq.

(1 Bq = one transformation per second).

A particle, consisting of two protons and two neutrons, which is emitted from the **ALPHA PARTICLE**

nucleus of certain radionuclides.

The smallest portion of an element that can combine chemically with other **ATOM**

atoms.

BECQUEREL see Activity.

BETA PARTICLE High energy electron which is emitted from the nucleus of certain radionuclides.

CONSTRAINT VALUE Activity value known to be less than a certain value.

COSMIC RAYS High energy ionising radiation from outer space.

> DOSE The term used either for individual absorbed dose or effective dose.

Recommended by the ICRP and authorised by regulatory authorities to apply to **DOSE LIMIT**

occupational and public exposure.

EFFECTIVE DOSE Weighted sum of the equivalent doses to the various organs or tissues. The

weighing factors are derived from the risk of stochastic effect to the individual

tissue or organ. The unit of measurement is the sievert, Sv.

ENVIRONMENTAL MONITORING The application of automatic or mobile equipment to measure the activity in the

environment of a release of radioactivity. The parameters usually include the activity of air, ground deposition, river water, drinking water and milk.

EQUIVALENT DOSE The quantity obtained by multiplying the absorbed dose by a factor to take into

account the relative harmfulness of the various types of ionising radiations. The unit is the sievert, Sv. One sievert produces the same biological effect

irrespective of the type of radiation.

A quantity of ionising electromagnetic radiation which is emitted by certain **GAMMA RAY**

radionuclides.

GRAY See Absorbed Dose.

The total measured beta activity in a sample. Depending on the measurement **GROSS BETA**

methodology it may exclude tritium and/or radon.

The time taken for the activity of a radionuclide to lose half of its value by decay. **HALF-LIFE**

Also referred to as "physical half-life".

The International Commission on Radiological Protection is a non-governmental **ICRP** scientific organisation which publishes recommendations on radiation protection.

Radiation which has sufficient energy to produce ionisation in matter; includes

IONISING RADIATION alpha particles, beta particles, gamma rays, X-rays and neutrons (neutrons

cause ionisation indirectly).

ISOTOPE Nuclides of the same element but with different number of neutrons.

NATURAL BACKGROUND The radiation field due to naturally occurring radioactivity. It includes radiation

arising from the presence of long-lived radionuclides and their daughters in the

earth's crust, atmosphere and cosmic radiation.

NEUTRON An elementary particle with no electric charge which combines with protons to

form an atomic nucleus.

PROTON An elementary particle with positive electric charge. The amount of protons in an atomic nucleus determines the chemical element.

RADIOACTIVE CONTAMINATION The undesirable presence of unsealed radioactive materials on surfaces, in air or

in water

The decay of a radionuclide by the spontaneous transformation of the nuclides, RADIOACTIVE DECAY at a rate represented by the half-life. The rate is expressed as the activity in

becquerel, Bq, indicating the number of transformations per second.

A species of atom characterised by the number of protons and neutrons (and **RADIONUCLIDE** sometimes by the energy state of the nucleus), and which emits ionising

radiation. It is described by the element and the total amount of protons and neutrons (eg caesium-137).

RADON A naturally occurring radioactive element and the heaviest noble gas. Radon-222

and Radon-220 (also called thoron) are the most important isotopes.

Value below which average Activity levels are not quoted exactly in this REPORTING LEVEL

Monitoring Report.

Gross beta activity minus potassium-40 (40K), which is the major natural beta **RESIDUAL BETA**

emitting component in surface water.

SIEVERT See equivalent Dose and Effective Dose.

EUR 31338 - Environmental Radioactivity in the European Community 2012 - 2014

Edited by: M. De Cort, T. Tollefsen, M. Marin Ferrer, J. C. De La Rosa Blul, S. Vanzo, M. A. Hernandez

Ceballos, G. Cinelli, E. Nweke, B. Rood, L. De Felice, S. Martino, P. V. Tognoli; European Commission, Joint Research Centre (JRC), Ispra, Italy and Petten, The Netherlands

V. Tanner, European Commission, DG Energy (DG ENER), Luxembourg

Luxembourg: Publications Office of the European Union

2023 - 204 pp. - 21,0 x 29,7 cm

EUR – Science for Policy series – ISSN 1831-9424 Radiation protection – ISSN 2315-2826

ISBN 978-92-76-60191-3

DOI 10.2760/396692

Quarterly average values of radioactivity levels in airborne particulates, surface water, drinking water, milk and mixed diet are reported for the twenty-eight countries of the European Union (sparse and dense network) for the years 2012-2014.

GETTING IN TOUCH WITH THE EU

In person

All over the European Union there are hundreds of Europe Direct centres. You can find the address of the centre nearest you online (european-union.europa.eu/contact-eu/meet-us_en).

On the phone or in writing

Europe Direct is a service that answers your questions about the European Union. You can contact this service:

- by freephone: 00 800 6 7 8 9 10 11 (certain operators may charge for these calls),
- at the following standard number: +32 22999696, $\,$
- via the following form: eu/contact-eu/write-us_en.

FINDING INFORMATION ABOUT THE EU

Online

Information about the European Union in all the official languages of the EU is available on the Europa website (<u>europeanunion.europa.eu</u>).

EU publications

You can view or order EU publications at <u>op.europa.eu/en/publications</u>. Multiple copies of free publications can be obtained by contacting Europe Direct or your local documentation centre (<u>european-union.europa.eu/contact-eu/meet-us_en</u>).

EU law and related documents

For access to legal information from the EU, including all EU law since 1951 in all the official language versions, go to EUR-Lex (eur-lex.europa.eu).

Open data from the EU

The portal <u>data.europa.eu</u> provides access to open datasets from the EU institutions, bodies and agencies. These can be downloaded and reused for free, for both commercial and non-commercial purposes. The portal also provides access to a wealth of datasets from European countries.

